Properties

Label 2-40656-1.1-c1-0-36
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s + 7-s + 9-s + 13-s − 3·15-s + 5·19-s − 21-s − 6·23-s + 4·25-s − 27-s + 3·29-s + 4·31-s + 3·35-s − 7·37-s − 39-s + 12·41-s + 2·43-s + 3·45-s − 3·47-s + 49-s + 6·53-s − 5·57-s − 3·59-s − 2·61-s + 63-s + 3·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s + 0.377·7-s + 1/3·9-s + 0.277·13-s − 0.774·15-s + 1.14·19-s − 0.218·21-s − 1.25·23-s + 4/5·25-s − 0.192·27-s + 0.557·29-s + 0.718·31-s + 0.507·35-s − 1.15·37-s − 0.160·39-s + 1.87·41-s + 0.304·43-s + 0.447·45-s − 0.437·47-s + 1/7·49-s + 0.824·53-s − 0.662·57-s − 0.390·59-s − 0.256·61-s + 0.125·63-s + 0.372·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.038871927\)
\(L(\frac12)\) \(\approx\) \(3.038871927\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55365286703877, −14.03927606737527, −13.91359363162941, −13.23262611895185, −12.75847807456870, −11.97106840331010, −11.82824089554752, −11.02466391114304, −10.51205376073006, −10.03018625115939, −9.641018167805443, −9.024073741246939, −8.446364687886432, −7.698186273370512, −7.233674218963416, −6.420835047894760, −5.989429992469176, −5.608924958924197, −4.959113304067275, −4.393892497886684, −3.590191094400234, −2.751442487149590, −2.061858036169639, −1.424091113586270, −0.6874029519276988, 0.6874029519276988, 1.424091113586270, 2.061858036169639, 2.751442487149590, 3.590191094400234, 4.393892497886684, 4.959113304067275, 5.608924958924197, 5.989429992469176, 6.420835047894760, 7.233674218963416, 7.698186273370512, 8.446364687886432, 9.024073741246939, 9.641018167805443, 10.03018625115939, 10.51205376073006, 11.02466391114304, 11.82824089554752, 11.97106840331010, 12.75847807456870, 13.23262611895185, 13.91359363162941, 14.03927606737527, 14.55365286703877

Graph of the $Z$-function along the critical line