Properties

Label 2-40656-1.1-c1-0-23
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 7-s + 9-s + 13-s − 2·15-s − 2·17-s − 21-s − 3·23-s − 25-s − 27-s + 29-s − 7·31-s + 2·35-s + 4·37-s − 39-s + 5·41-s − 43-s + 2·45-s + 2·47-s + 49-s + 2·51-s + 10·53-s − 3·59-s + 61-s + 63-s + 2·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 0.377·7-s + 1/3·9-s + 0.277·13-s − 0.516·15-s − 0.485·17-s − 0.218·21-s − 0.625·23-s − 1/5·25-s − 0.192·27-s + 0.185·29-s − 1.25·31-s + 0.338·35-s + 0.657·37-s − 0.160·39-s + 0.780·41-s − 0.152·43-s + 0.298·45-s + 0.291·47-s + 1/7·49-s + 0.280·51-s + 1.37·53-s − 0.390·59-s + 0.128·61-s + 0.125·63-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.112360234\)
\(L(\frac12)\) \(\approx\) \(2.112360234\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.72852005564108, −14.23044846735549, −13.64504963227157, −13.25375684525629, −12.74611091612556, −12.14087289157279, −11.56296350107598, −11.15555226468157, −10.45635661823008, −10.23733718440506, −9.374662391464766, −9.151596153412345, −8.383597845078089, −7.743293610009626, −7.201924755509977, −6.498714747790705, −6.002226750417577, −5.548566897311193, −4.997963943343787, −4.221095193238933, −3.763515612983067, −2.709751880214748, −2.069404735848108, −1.478806362115812, −0.5504777759138855, 0.5504777759138855, 1.478806362115812, 2.069404735848108, 2.709751880214748, 3.763515612983067, 4.221095193238933, 4.997963943343787, 5.548566897311193, 6.002226750417577, 6.498714747790705, 7.201924755509977, 7.743293610009626, 8.383597845078089, 9.151596153412345, 9.374662391464766, 10.23733718440506, 10.45635661823008, 11.15555226468157, 11.56296350107598, 12.14087289157279, 12.74611091612556, 13.25375684525629, 13.64504963227157, 14.23044846735549, 14.72852005564108

Graph of the $Z$-function along the critical line