Properties

Label 2-40560-1.1-c1-0-53
Degree $2$
Conductor $40560$
Sign $-1$
Analytic cond. $323.873$
Root an. cond. $17.9964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 3·7-s + 9-s + 3·11-s − 15-s − 3·19-s − 3·21-s + 4·23-s + 25-s + 27-s − 4·29-s − 6·31-s + 3·33-s + 3·35-s + 9·37-s − 10·41-s + 10·43-s − 45-s + 3·47-s + 2·49-s + 9·53-s − 3·55-s − 3·57-s − 12·59-s − 6·61-s − 3·63-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.13·7-s + 1/3·9-s + 0.904·11-s − 0.258·15-s − 0.688·19-s − 0.654·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.742·29-s − 1.07·31-s + 0.522·33-s + 0.507·35-s + 1.47·37-s − 1.56·41-s + 1.52·43-s − 0.149·45-s + 0.437·47-s + 2/7·49-s + 1.23·53-s − 0.404·55-s − 0.397·57-s − 1.56·59-s − 0.768·61-s − 0.377·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(323.873\)
Root analytic conductor: \(17.9964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95332197292897, −14.61331056704962, −14.04302547080939, −13.37061039723334, −12.97192252067025, −12.52229435921915, −12.06461202600954, −11.21866311372910, −10.99480870182577, −10.16200615228349, −9.679058188448393, −9.074934621831141, −8.879979366055909, −8.135666916666670, −7.368142308430252, −7.098936729349219, −6.378046157065600, −5.950572569282563, −5.118302192137108, −4.253037406253480, −3.890498838506729, −3.261973792944471, −2.687812675586317, −1.862221125230959, −0.9673094416971007, 0, 0.9673094416971007, 1.862221125230959, 2.687812675586317, 3.261973792944471, 3.890498838506729, 4.253037406253480, 5.118302192137108, 5.950572569282563, 6.378046157065600, 7.098936729349219, 7.368142308430252, 8.135666916666670, 8.879979366055909, 9.074934621831141, 9.679058188448393, 10.16200615228349, 10.99480870182577, 11.21866311372910, 12.06461202600954, 12.52229435921915, 12.97192252067025, 13.37061039723334, 14.04302547080939, 14.61331056704962, 14.95332197292897

Graph of the $Z$-function along the critical line