Properties

Label 2-40560-1.1-c1-0-50
Degree $2$
Conductor $40560$
Sign $-1$
Analytic cond. $323.873$
Root an. cond. $17.9964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s − 11-s − 15-s + 2·17-s − 6·19-s − 2·21-s + 3·23-s + 25-s + 27-s − 29-s + 3·31-s − 33-s + 2·35-s − 5·37-s + 10·41-s − 5·43-s − 45-s − 3·47-s − 3·49-s + 2·51-s + 14·53-s + 55-s − 6·57-s + 5·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 0.258·15-s + 0.485·17-s − 1.37·19-s − 0.436·21-s + 0.625·23-s + 1/5·25-s + 0.192·27-s − 0.185·29-s + 0.538·31-s − 0.174·33-s + 0.338·35-s − 0.821·37-s + 1.56·41-s − 0.762·43-s − 0.149·45-s − 0.437·47-s − 3/7·49-s + 0.280·51-s + 1.92·53-s + 0.134·55-s − 0.794·57-s + 0.650·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(323.873\)
Root analytic conductor: \(17.9964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.11006095087128, −14.55633852207573, −14.05073403150268, −13.32708223340180, −13.00812626771830, −12.56486186443929, −11.98378339174837, −11.40724176419647, −10.70141764236213, −10.28670569015093, −9.811617292900838, −9.032881471775070, −8.748368147442645, −8.115567782998181, −7.543247284478837, −7.020166321272706, −6.417017338042200, −5.877367463082931, −5.054917025089402, −4.441995381044943, −3.804445358087738, −3.241153907225774, −2.637478061833213, −1.942584157191138, −0.9292540090669781, 0, 0.9292540090669781, 1.942584157191138, 2.637478061833213, 3.241153907225774, 3.804445358087738, 4.441995381044943, 5.054917025089402, 5.877367463082931, 6.417017338042200, 7.020166321272706, 7.543247284478837, 8.115567782998181, 8.748368147442645, 9.032881471775070, 9.811617292900838, 10.28670569015093, 10.70141764236213, 11.40724176419647, 11.98378339174837, 12.56486186443929, 13.00812626771830, 13.32708223340180, 14.05073403150268, 14.55633852207573, 15.11006095087128

Graph of the $Z$-function along the critical line