Properties

Label 2-383792-1.1-c1-0-4
Degree $2$
Conductor $383792$
Sign $1$
Analytic cond. $3064.59$
Root an. cond. $55.3587$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·5-s − 4·7-s + 9-s − 2·11-s − 2·13-s − 8·15-s + 4·19-s − 8·21-s + 4·23-s + 11·25-s − 4·27-s − 2·29-s − 4·31-s − 4·33-s + 16·35-s + 2·37-s − 4·39-s − 4·41-s − 4·43-s − 4·45-s + 8·47-s + 9·49-s − 10·53-s + 8·55-s + 8·57-s − 12·59-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.78·5-s − 1.51·7-s + 1/3·9-s − 0.603·11-s − 0.554·13-s − 2.06·15-s + 0.917·19-s − 1.74·21-s + 0.834·23-s + 11/5·25-s − 0.769·27-s − 0.371·29-s − 0.718·31-s − 0.696·33-s + 2.70·35-s + 0.328·37-s − 0.640·39-s − 0.624·41-s − 0.609·43-s − 0.596·45-s + 1.16·47-s + 9/7·49-s − 1.37·53-s + 1.07·55-s + 1.05·57-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383792\)    =    \(2^{4} \cdot 17^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(3064.59\)
Root analytic conductor: \(55.3587\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 383792,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8937847190\)
\(L(\frac12)\) \(\approx\) \(0.8937847190\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
83 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56290486411554, −12.08303596672845, −11.63436308664939, −11.10349897480911, −10.76515759765027, −10.03034035121655, −9.713146631189196, −9.152692805874992, −8.906602054745743, −8.327877623596181, −7.850063131056281, −7.471202398302364, −7.226844121151965, −6.665827723224463, −6.098939719494675, −5.324086026609846, −4.939725233876331, −4.266714867613377, −3.679690807424800, −3.362535626961727, −3.073097874409672, −2.603537028710119, −1.901840208481210, −0.8606680582008911, −0.2780096521275995, 0.2780096521275995, 0.8606680582008911, 1.901840208481210, 2.603537028710119, 3.073097874409672, 3.362535626961727, 3.679690807424800, 4.266714867613377, 4.939725233876331, 5.324086026609846, 6.098939719494675, 6.665827723224463, 7.226844121151965, 7.471202398302364, 7.850063131056281, 8.327877623596181, 8.906602054745743, 9.152692805874992, 9.713146631189196, 10.03034035121655, 10.76515759765027, 11.10349897480911, 11.63436308664939, 12.08303596672845, 12.56290486411554

Graph of the $Z$-function along the critical line