Properties

Label 2-382800-1.1-c1-0-115
Degree $2$
Conductor $382800$
Sign $-1$
Analytic cond. $3056.67$
Root an. cond. $55.2871$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s − 11-s + 13-s − 5·17-s + 4·19-s − 2·21-s + 27-s + 29-s + 5·31-s − 33-s + 37-s + 39-s + 10·41-s − 5·43-s − 3·47-s − 3·49-s − 5·51-s − 9·53-s + 4·57-s + 3·59-s − 13·61-s − 2·63-s − 5·67-s − 8·71-s − 4·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.301·11-s + 0.277·13-s − 1.21·17-s + 0.917·19-s − 0.436·21-s + 0.192·27-s + 0.185·29-s + 0.898·31-s − 0.174·33-s + 0.164·37-s + 0.160·39-s + 1.56·41-s − 0.762·43-s − 0.437·47-s − 3/7·49-s − 0.700·51-s − 1.23·53-s + 0.529·57-s + 0.390·59-s − 1.66·61-s − 0.251·63-s − 0.610·67-s − 0.949·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $-1$
Analytic conductor: \(3056.67\)
Root analytic conductor: \(55.2871\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 382800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
29 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83308381123784, −12.29968615883472, −11.81540859458350, −11.30019779281228, −10.94772742466138, −10.22626119983480, −10.08583305145403, −9.441449355390068, −8.996660025956765, −8.843301320786787, −8.020088433036456, −7.746823322931568, −7.290762240115944, −6.625010136118570, −6.268358710805205, −5.949219918665157, −5.081848198241622, −4.692140007958756, −4.239806452554373, −3.546461629462231, −3.094824434806876, −2.737130238522862, −2.079461126949906, −1.470390519268793, −0.7404532725041789, 0, 0.7404532725041789, 1.470390519268793, 2.079461126949906, 2.737130238522862, 3.094824434806876, 3.546461629462231, 4.239806452554373, 4.692140007958756, 5.081848198241622, 5.949219918665157, 6.268358710805205, 6.625010136118570, 7.290762240115944, 7.746823322931568, 8.020088433036456, 8.843301320786787, 8.996660025956765, 9.441449355390068, 10.08583305145403, 10.22626119983480, 10.94772742466138, 11.30019779281228, 11.81540859458350, 12.29968615883472, 12.83308381123784

Graph of the $Z$-function along the critical line