Properties

Label 2-382347-1.1-c1-0-10
Degree $2$
Conductor $382347$
Sign $1$
Analytic cond. $3053.05$
Root an. cond. $55.2544$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 2·5-s − 4·10-s − 3·11-s − 7·13-s − 4·16-s + 4·19-s − 4·20-s − 6·22-s − 23-s − 25-s − 14·26-s + 9·29-s − 2·31-s − 8·32-s + 8·37-s + 8·38-s − 9·41-s + 7·43-s − 6·44-s − 2·46-s − 2·50-s − 14·52-s + 6·53-s + 6·55-s + 18·58-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.894·5-s − 1.26·10-s − 0.904·11-s − 1.94·13-s − 16-s + 0.917·19-s − 0.894·20-s − 1.27·22-s − 0.208·23-s − 1/5·25-s − 2.74·26-s + 1.67·29-s − 0.359·31-s − 1.41·32-s + 1.31·37-s + 1.29·38-s − 1.40·41-s + 1.06·43-s − 0.904·44-s − 0.294·46-s − 0.282·50-s − 1.94·52-s + 0.824·53-s + 0.809·55-s + 2.36·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382347 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382347 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382347\)    =    \(3^{3} \cdot 7^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(3053.05\)
Root analytic conductor: \(55.2544\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 382347,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.617772521\)
\(L(\frac12)\) \(\approx\) \(1.617772521\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
17 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 7 T + p T^{2} \) 1.13.h
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.44751110549256, −12.10716094592911, −11.82974755293525, −11.34630789145923, −10.88256774901167, −10.23424416137936, −9.830635383517994, −9.453653700583465, −8.786096494285613, −8.131401591390299, −7.792107070554765, −7.412266240607182, −6.825140954168112, −6.516602941636118, −5.719416709242800, −5.260076675840297, −5.012105868859923, −4.513341537558479, −4.027199345192503, −3.556054005227398, −2.882884545385502, −2.559694938404709, −2.167354963231610, −1.037446386816605, −0.2715905937833016, 0.2715905937833016, 1.037446386816605, 2.167354963231610, 2.559694938404709, 2.882884545385502, 3.556054005227398, 4.027199345192503, 4.513341537558479, 5.012105868859923, 5.260076675840297, 5.719416709242800, 6.516602941636118, 6.825140954168112, 7.412266240607182, 7.792107070554765, 8.131401591390299, 8.786096494285613, 9.453653700583465, 9.830635383517994, 10.23424416137936, 10.88256774901167, 11.34630789145923, 11.82974755293525, 12.10716094592911, 12.44751110549256

Graph of the $Z$-function along the critical line