Properties

Label 382347.dg
Number of curves $1$
Conductor $382347$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 382347.dg1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 382347.dg do not have complex multiplication.

Modular form 382347.2.a.dg

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} - 2 q^{5} - 4 q^{10} - 3 q^{11} - 7 q^{13} - 4 q^{16} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 382347.dg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
382347.dg1 382347dg1 \([0, 0, 1, -4970511, -4265558719]\) \(-242970624/17\) \(-950215219546430691\) \([]\) \(16422912\) \(2.5027\) \(\Gamma_0(N)\)-optimal