Properties

Label 2-38088-1.1-c1-0-12
Degree $2$
Conductor $38088$
Sign $1$
Analytic cond. $304.134$
Root an. cond. $17.4394$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 5·11-s + 4·13-s − 2·17-s − 25-s + 29-s + 3·31-s − 2·35-s − 4·37-s + 2·43-s − 8·47-s − 6·49-s + 9·53-s + 10·55-s − 7·59-s − 4·61-s + 8·65-s + 8·67-s + 10·71-s − 3·73-s − 5·77-s − 3·79-s + 3·83-s − 4·85-s + 10·89-s − 4·91-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 1.50·11-s + 1.10·13-s − 0.485·17-s − 1/5·25-s + 0.185·29-s + 0.538·31-s − 0.338·35-s − 0.657·37-s + 0.304·43-s − 1.16·47-s − 6/7·49-s + 1.23·53-s + 1.34·55-s − 0.911·59-s − 0.512·61-s + 0.992·65-s + 0.977·67-s + 1.18·71-s − 0.351·73-s − 0.569·77-s − 0.337·79-s + 0.329·83-s − 0.433·85-s + 1.05·89-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38088\)    =    \(2^{3} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(304.134\)
Root analytic conductor: \(17.4394\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38088,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.301522090\)
\(L(\frac12)\) \(\approx\) \(3.301522090\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.79862259809504, −14.15060865679993, −13.82910797904418, −13.39227792066410, −12.85111536816451, −12.22727347086895, −11.69170955205326, −11.17414813217256, −10.64578252216155, −9.945993972444362, −9.544291175441442, −9.050152215062066, −8.548530208632045, −7.985233115815132, −7.023605764884764, −6.571107379462844, −6.196424512188321, −5.680772728376050, −4.882631881230982, −4.166018000169347, −3.612901134692555, −2.984329791028165, −1.996261799651685, −1.530053454989722, −0.6894379803283705, 0.6894379803283705, 1.530053454989722, 1.996261799651685, 2.984329791028165, 3.612901134692555, 4.166018000169347, 4.882631881230982, 5.680772728376050, 6.196424512188321, 6.571107379462844, 7.023605764884764, 7.985233115815132, 8.548530208632045, 9.050152215062066, 9.544291175441442, 9.945993972444362, 10.64578252216155, 11.17414813217256, 11.69170955205326, 12.22727347086895, 12.85111536816451, 13.39227792066410, 13.82910797904418, 14.15060865679993, 14.79862259809504

Graph of the $Z$-function along the critical line