Properties

Label 2-372645-1.1-c1-0-133
Degree $2$
Conductor $372645$
Sign $1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 5-s + 11-s + 4·16-s − 6·17-s − 2·19-s − 2·20-s − 8·23-s + 25-s − 8·29-s − 4·31-s + 7·37-s − 10·41-s + 4·43-s − 2·44-s + 11·53-s + 55-s − 59-s + 7·61-s − 8·64-s − 7·67-s + 12·68-s − 5·71-s − 3·73-s + 4·76-s − 5·79-s + 4·80-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s + 0.301·11-s + 16-s − 1.45·17-s − 0.458·19-s − 0.447·20-s − 1.66·23-s + 1/5·25-s − 1.48·29-s − 0.718·31-s + 1.15·37-s − 1.56·41-s + 0.609·43-s − 0.301·44-s + 1.51·53-s + 0.134·55-s − 0.130·59-s + 0.896·61-s − 64-s − 0.855·67-s + 1.45·68-s − 0.593·71-s − 0.351·73-s + 0.458·76-s − 0.562·79-s + 0.447·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19242281499780, −12.56027929935986, −12.10361008714253, −11.61681488630724, −11.08814688896445, −10.67608670905116, −10.09848762964371, −9.770548535268706, −9.299927923439839, −8.876577468554360, −8.514961317260724, −8.054683399773864, −7.462413127173812, −6.963091612658235, −6.433395679851889, −5.807897840625769, −5.634009505374593, −4.986920162436273, −4.296859373036563, −4.104983076190997, −3.654628265927598, −2.853260920108195, −2.184984865068586, −1.793416740514102, −1.084474682406587, 0, 0, 1.084474682406587, 1.793416740514102, 2.184984865068586, 2.853260920108195, 3.654628265927598, 4.104983076190997, 4.296859373036563, 4.986920162436273, 5.634009505374593, 5.807897840625769, 6.433395679851889, 6.963091612658235, 7.462413127173812, 8.054683399773864, 8.514961317260724, 8.876577468554360, 9.299927923439839, 9.770548535268706, 10.09848762964371, 10.67608670905116, 11.08814688896445, 11.61681488630724, 12.10361008714253, 12.56027929935986, 13.19242281499780

Graph of the $Z$-function along the critical line