Properties

Label 2-372645-1.1-c1-0-131
Degree $2$
Conductor $372645$
Sign $1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 5-s − 5·11-s + 4·16-s − 3·17-s − 2·19-s − 2·20-s + 4·23-s + 25-s − 5·29-s + 2·31-s + 4·37-s + 2·41-s − 8·43-s + 10·44-s − 9·47-s + 2·53-s − 5·55-s + 8·59-s − 8·61-s − 8·64-s − 10·67-s + 6·68-s − 5·71-s + 9·73-s + 4·76-s − 8·79-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s − 1.50·11-s + 16-s − 0.727·17-s − 0.458·19-s − 0.447·20-s + 0.834·23-s + 1/5·25-s − 0.928·29-s + 0.359·31-s + 0.657·37-s + 0.312·41-s − 1.21·43-s + 1.50·44-s − 1.31·47-s + 0.274·53-s − 0.674·55-s + 1.04·59-s − 1.02·61-s − 64-s − 1.22·67-s + 0.727·68-s − 0.593·71-s + 1.05·73-s + 0.458·76-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 13 T + p T^{2} \) 1.83.n
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.02734149598874, −12.85212324995100, −12.09430074765409, −11.58203823533483, −10.98737719163811, −10.67145767095903, −10.21475101821275, −9.658180890778800, −9.486426123821313, −8.762767436366546, −8.446971768504124, −8.083044613301261, −7.475782473896933, −7.035663692844487, −6.436409488679941, −5.799601296274241, −5.514494162163404, −4.911259642503696, −4.622245968523649, −4.093312263062874, −3.371631436906199, −2.885384944610004, −2.393384532571207, −1.678890959570879, −1.067108687187865, 0, 0, 1.067108687187865, 1.678890959570879, 2.393384532571207, 2.885384944610004, 3.371631436906199, 4.093312263062874, 4.622245968523649, 4.911259642503696, 5.514494162163404, 5.799601296274241, 6.436409488679941, 7.035663692844487, 7.475782473896933, 8.083044613301261, 8.446971768504124, 8.762767436366546, 9.486426123821313, 9.658180890778800, 10.21475101821275, 10.67145767095903, 10.98737719163811, 11.58203823533483, 12.09430074765409, 12.85212324995100, 13.02734149598874

Graph of the $Z$-function along the critical line