Properties

Label 2-372645-1.1-c1-0-100
Degree $2$
Conductor $372645$
Sign $1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 5-s + 2·10-s + 5·11-s − 4·16-s + 2·17-s + 6·19-s + 2·20-s + 10·22-s + 6·23-s + 25-s − 2·29-s + 8·31-s − 8·32-s + 4·34-s − 10·37-s + 12·38-s + 10·43-s + 10·44-s + 12·46-s + 8·47-s + 2·50-s − 2·53-s + 5·55-s − 4·58-s + 6·59-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.447·5-s + 0.632·10-s + 1.50·11-s − 16-s + 0.485·17-s + 1.37·19-s + 0.447·20-s + 2.13·22-s + 1.25·23-s + 1/5·25-s − 0.371·29-s + 1.43·31-s − 1.41·32-s + 0.685·34-s − 1.64·37-s + 1.94·38-s + 1.52·43-s + 1.50·44-s + 1.76·46-s + 1.16·47-s + 0.282·50-s − 0.274·53-s + 0.674·55-s − 0.525·58-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(10.53517692\)
\(L(\frac12)\) \(\approx\) \(10.53517692\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56520121241487, −12.06544049913393, −11.79606542329752, −11.37108406792245, −10.88181039703593, −10.28887574533784, −9.759503243146492, −9.291909218361665, −8.929830788515081, −8.572490736620181, −7.660294379216448, −7.259038849433477, −6.787090824225944, −6.370928056470167, −5.896372531343462, −5.368427236225814, −5.089041190214008, −4.470473046065535, −3.970975180703651, −3.518666205131558, −3.039150839258093, −2.573744292783081, −1.833523628323901, −1.161542438410844, −0.7099782177325375, 0.7099782177325375, 1.161542438410844, 1.833523628323901, 2.573744292783081, 3.039150839258093, 3.518666205131558, 3.970975180703651, 4.470473046065535, 5.089041190214008, 5.368427236225814, 5.896372531343462, 6.370928056470167, 6.787090824225944, 7.259038849433477, 7.660294379216448, 8.572490736620181, 8.929830788515081, 9.291909218361665, 9.759503243146492, 10.28887574533784, 10.88181039703593, 11.37108406792245, 11.79606542329752, 12.06544049913393, 12.56520121241487

Graph of the $Z$-function along the critical line