Properties

Label 2-363090-1.1-c1-0-104
Degree $2$
Conductor $363090$
Sign $-1$
Analytic cond. $2899.28$
Root an. cond. $53.8450$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 8-s + 9-s + 10-s − 3·11-s − 12-s − 13-s − 15-s + 16-s − 5·17-s + 18-s + 19-s + 20-s − 3·22-s − 4·23-s − 24-s + 25-s − 26-s − 27-s − 8·29-s − 30-s + 4·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.904·11-s − 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s − 1.21·17-s + 0.235·18-s + 0.229·19-s + 0.223·20-s − 0.639·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s − 1.48·29-s − 0.182·30-s + 0.718·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363090\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(2899.28\)
Root analytic conductor: \(53.8450\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363090,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
19 \( 1 - T \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 5 T + p T^{2} \) 1.17.f
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.97757727681340, −12.23513009313471, −11.87825111214465, −11.51392604049901, −10.90525459919632, −10.59646662330702, −10.13492373205405, −9.790316543862577, −9.068935285994866, −8.707890107627382, −8.070224109450812, −7.545185823129516, −7.075894230020282, −6.706767828041349, −6.144829658356963, −5.521734901300990, −5.456887393941508, −4.818906581798011, −4.288902848113855, −3.847210673433558, −3.219148432210488, −2.464399554845752, −2.168341529086906, −1.613099933822173, −0.6881260777454889, 0, 0.6881260777454889, 1.613099933822173, 2.168341529086906, 2.464399554845752, 3.219148432210488, 3.847210673433558, 4.288902848113855, 4.818906581798011, 5.456887393941508, 5.521734901300990, 6.144829658356963, 6.706767828041349, 7.075894230020282, 7.545185823129516, 8.070224109450812, 8.707890107627382, 9.068935285994866, 9.790316543862577, 10.13492373205405, 10.59646662330702, 10.90525459919632, 11.51392604049901, 11.87825111214465, 12.23513009313471, 12.97757727681340

Graph of the $Z$-function along the critical line