Properties

Label 2-361998-1.1-c1-0-15
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·5-s − 7-s + 8-s − 3·10-s − 3·11-s − 14-s + 16-s − 17-s − 2·19-s − 3·20-s − 3·22-s + 4·25-s − 28-s − 2·31-s + 32-s − 34-s + 3·35-s + 37-s − 2·38-s − 3·40-s + 5·43-s − 3·44-s + 6·47-s + 49-s + 4·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.377·7-s + 0.353·8-s − 0.948·10-s − 0.904·11-s − 0.267·14-s + 1/4·16-s − 0.242·17-s − 0.458·19-s − 0.670·20-s − 0.639·22-s + 4/5·25-s − 0.188·28-s − 0.359·31-s + 0.176·32-s − 0.171·34-s + 0.507·35-s + 0.164·37-s − 0.324·38-s − 0.474·40-s + 0.762·43-s − 0.452·44-s + 0.875·47-s + 1/7·49-s + 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.677029641\)
\(L(\frac12)\) \(\approx\) \(1.677029641\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57637462743813, −12.10950591241728, −11.67669858836384, −11.22576892141996, −10.85562296672426, −10.41169481266777, −9.957649052770703, −9.288389668815979, −8.792170735879031, −8.293649825914254, −7.687395606753979, −7.661158987507625, −6.845329205169406, −6.651481793560153, −5.932670397881723, −5.361831035040288, −5.072578290636533, −4.211562260094077, −4.123810708497031, −3.564243037199002, −2.950414233446505, −2.504916276570178, −1.940272302641511, −0.9624775425570298, −0.3377803605367080, 0.3377803605367080, 0.9624775425570298, 1.940272302641511, 2.504916276570178, 2.950414233446505, 3.564243037199002, 4.123810708497031, 4.211562260094077, 5.072578290636533, 5.361831035040288, 5.932670397881723, 6.651481793560153, 6.845329205169406, 7.661158987507625, 7.687395606753979, 8.293649825914254, 8.792170735879031, 9.288389668815979, 9.957649052770703, 10.41169481266777, 10.85562296672426, 11.22576892141996, 11.67669858836384, 12.10950591241728, 12.57637462743813

Graph of the $Z$-function along the critical line