Properties

Label 2-360e2-1.1-c1-0-135
Degree $2$
Conductor $129600$
Sign $-1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 3·11-s − 4·13-s − 3·17-s − 5·19-s − 6·23-s − 6·29-s + 2·31-s − 4·37-s − 3·41-s + 11·43-s + 9·49-s + 6·53-s + 3·59-s + 10·61-s + 5·67-s + 6·71-s + 7·73-s − 12·77-s + 14·79-s + 12·83-s + 6·89-s − 16·91-s − 11·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.904·11-s − 1.10·13-s − 0.727·17-s − 1.14·19-s − 1.25·23-s − 1.11·29-s + 0.359·31-s − 0.657·37-s − 0.468·41-s + 1.67·43-s + 9/7·49-s + 0.824·53-s + 0.390·59-s + 1.28·61-s + 0.610·67-s + 0.712·71-s + 0.819·73-s − 1.36·77-s + 1.57·79-s + 1.31·83-s + 0.635·89-s − 1.67·91-s − 1.11·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71742654021115, −13.33717530647249, −12.65282470523361, −12.32719739875298, −11.79109467433495, −11.28143408864453, −10.82299894303364, −10.46622899821262, −9.955600453604225, −9.302951903106034, −8.800804890746606, −8.200783640682965, −7.885849675376908, −7.506386113103423, −6.816951896231256, −6.323969207343169, −5.430139452814533, −5.276859342442011, −4.667383388074208, −4.119679124248140, −3.682069334755709, −2.492558117349717, −2.234311664712997, −1.861932324707784, −0.7684303896182987, 0, 0.7684303896182987, 1.861932324707784, 2.234311664712997, 2.492558117349717, 3.682069334755709, 4.119679124248140, 4.667383388074208, 5.276859342442011, 5.430139452814533, 6.323969207343169, 6.816951896231256, 7.506386113103423, 7.885849675376908, 8.200783640682965, 8.800804890746606, 9.302951903106034, 9.955600453604225, 10.46622899821262, 10.82299894303364, 11.28143408864453, 11.79109467433495, 12.32719739875298, 12.65282470523361, 13.33717530647249, 13.71742654021115

Graph of the $Z$-function along the critical line