Properties

Label 2-360e2-1.1-c1-0-12
Degree $2$
Conductor $129600$
Sign $1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·11-s − 4·13-s − 3·17-s − 4·19-s + 2·23-s + 2·29-s − 4·31-s + 4·37-s − 10·41-s + 7·43-s − 4·47-s − 7·49-s − 8·53-s − 59-s − 4·61-s − 12·67-s − 14·71-s + 2·73-s + 83-s + 89-s − 17·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.904·11-s − 1.10·13-s − 0.727·17-s − 0.917·19-s + 0.417·23-s + 0.371·29-s − 0.718·31-s + 0.657·37-s − 1.56·41-s + 1.06·43-s − 0.583·47-s − 49-s − 1.09·53-s − 0.130·59-s − 0.512·61-s − 1.46·67-s − 1.66·71-s + 0.234·73-s + 0.109·83-s + 0.105·89-s − 1.72·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7179034761\)
\(L(\frac12)\) \(\approx\) \(0.7179034761\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46659171090799, −13.02277220681560, −12.39398182171097, −12.19686733923304, −11.53160374090643, −11.10950369037281, −10.64194028508001, −10.08150237830217, −9.522488524044616, −9.160553188214545, −8.671427345479202, −8.116090054403785, −7.525788511741926, −7.036861912249325, −6.476164145252758, −6.205461156924045, −5.380063895522247, −4.834563489360009, −4.362325593716241, −3.904161882953042, −3.044812694621719, −2.654394790558236, −1.794409603348124, −1.404361095706824, −0.2458306018552652, 0.2458306018552652, 1.404361095706824, 1.794409603348124, 2.654394790558236, 3.044812694621719, 3.904161882953042, 4.362325593716241, 4.834563489360009, 5.380063895522247, 6.205461156924045, 6.476164145252758, 7.036861912249325, 7.525788511741926, 8.116090054403785, 8.671427345479202, 9.160553188214545, 9.522488524044616, 10.08150237830217, 10.64194028508001, 11.10950369037281, 11.53160374090643, 12.19686733923304, 12.39398182171097, 13.02277220681560, 13.46659171090799

Graph of the $Z$-function along the critical line