Properties

Label 2-35904-1.1-c1-0-30
Degree $2$
Conductor $35904$
Sign $1$
Analytic cond. $286.694$
Root an. cond. $16.9320$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·7-s + 9-s + 11-s + 4·13-s − 17-s − 2·19-s + 3·21-s − 6·23-s − 5·25-s + 27-s + 9·29-s + 4·31-s + 33-s − 2·37-s + 4·39-s − 41-s + 6·43-s + 9·47-s + 2·49-s − 51-s − 13·53-s − 2·57-s − 15·59-s + 14·61-s + 3·63-s − 9·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.13·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s − 0.242·17-s − 0.458·19-s + 0.654·21-s − 1.25·23-s − 25-s + 0.192·27-s + 1.67·29-s + 0.718·31-s + 0.174·33-s − 0.328·37-s + 0.640·39-s − 0.156·41-s + 0.914·43-s + 1.31·47-s + 2/7·49-s − 0.140·51-s − 1.78·53-s − 0.264·57-s − 1.95·59-s + 1.79·61-s + 0.377·63-s − 1.09·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35904\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(286.694\)
Root analytic conductor: \(16.9320\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35904,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.924657004\)
\(L(\frac12)\) \(\approx\) \(3.924657004\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.83780866934875, −14.24754832143748, −13.92586763567421, −13.61558474470274, −12.88114569360489, −12.12081539966781, −11.90712965127970, −11.15353765499838, −10.71323530162763, −10.18751490963650, −9.532121656947780, −8.871277158476154, −8.431725791500816, −7.966409846180920, −7.590383746285792, −6.622573339043701, −6.206952431639466, −5.602257894658368, −4.620565360419243, −4.360008317676802, −3.682170080985102, −2.920304657274407, −2.067033559313784, −1.601046290202745, −0.7300782024525559, 0.7300782024525559, 1.601046290202745, 2.067033559313784, 2.920304657274407, 3.682170080985102, 4.360008317676802, 4.620565360419243, 5.602257894658368, 6.206952431639466, 6.622573339043701, 7.590383746285792, 7.966409846180920, 8.431725791500816, 8.871277158476154, 9.532121656947780, 10.18751490963650, 10.71323530162763, 11.15353765499838, 11.90712965127970, 12.12081539966781, 12.88114569360489, 13.61558474470274, 13.92586763567421, 14.24754832143748, 14.83780866934875

Graph of the $Z$-function along the critical line