Properties

Label 2-35904-1.1-c1-0-13
Degree $2$
Conductor $35904$
Sign $1$
Analytic cond. $286.694$
Root an. cond. $16.9320$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 4·7-s + 9-s + 11-s + 2·13-s + 2·15-s − 17-s − 4·19-s − 4·21-s − 25-s − 27-s − 2·29-s − 33-s − 8·35-s + 2·37-s − 2·39-s + 6·41-s + 4·43-s − 2·45-s + 12·47-s + 9·49-s + 51-s + 2·53-s − 2·55-s + 4·57-s − 8·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s + 0.554·13-s + 0.516·15-s − 0.242·17-s − 0.917·19-s − 0.872·21-s − 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.174·33-s − 1.35·35-s + 0.328·37-s − 0.320·39-s + 0.937·41-s + 0.609·43-s − 0.298·45-s + 1.75·47-s + 9/7·49-s + 0.140·51-s + 0.274·53-s − 0.269·55-s + 0.529·57-s − 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35904\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(286.694\)
Root analytic conductor: \(16.9320\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35904,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.675399256\)
\(L(\frac12)\) \(\approx\) \(1.675399256\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92507511265401, −14.56369290742748, −13.84399188420600, −13.43653685963825, −12.62075604654866, −12.14948800892176, −11.76360200121269, −11.13711364013715, −10.85679013114696, −10.51202165704931, −9.473790536916686, −8.962790594125844, −8.355011072291898, −7.873915307605309, −7.418559094614139, −6.818806904461179, −5.934663283780814, −5.666928471660559, −4.727249595421731, −4.228618289735131, −4.027911749364543, −2.938981317724842, −2.027389784323417, −1.380826441158703, −0.5288883880982531, 0.5288883880982531, 1.380826441158703, 2.027389784323417, 2.938981317724842, 4.027911749364543, 4.228618289735131, 4.727249595421731, 5.666928471660559, 5.934663283780814, 6.818806904461179, 7.418559094614139, 7.873915307605309, 8.355011072291898, 8.962790594125844, 9.473790536916686, 10.51202165704931, 10.85679013114696, 11.13711364013715, 11.76360200121269, 12.14948800892176, 12.62075604654866, 13.43653685963825, 13.84399188420600, 14.56369290742748, 14.92507511265401

Graph of the $Z$-function along the critical line