Properties

Label 2-35700-1.1-c1-0-18
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 11-s − 4·13-s + 17-s + 21-s + 23-s − 27-s − 9·29-s − 2·31-s − 33-s + 3·37-s + 4·39-s + 4·41-s − 7·43-s + 4·47-s + 49-s − 51-s + 2·53-s − 12·59-s + 8·61-s − 63-s + 7·67-s − 69-s + 5·71-s + 14·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.301·11-s − 1.10·13-s + 0.242·17-s + 0.218·21-s + 0.208·23-s − 0.192·27-s − 1.67·29-s − 0.359·31-s − 0.174·33-s + 0.493·37-s + 0.640·39-s + 0.624·41-s − 1.06·43-s + 0.583·47-s + 1/7·49-s − 0.140·51-s + 0.274·53-s − 1.56·59-s + 1.02·61-s − 0.125·63-s + 0.855·67-s − 0.120·69-s + 0.593·71-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.24664771464607, −14.71223224290228, −14.16675516080343, −13.60970252631797, −12.85622770050148, −12.62968927777788, −12.09070456951597, −11.40318639148790, −11.11661459173352, −10.40206010584529, −9.807748021734198, −9.452012435535964, −8.914080115976554, −8.050869368308718, −7.502630837324864, −7.043376970664986, −6.429323240082592, −5.813481085456443, −5.239034889239352, −4.726705427686998, −3.915790127507644, −3.413391517558518, −2.482055443630905, −1.862537261398996, −0.8525506725960056, 0, 0.8525506725960056, 1.862537261398996, 2.482055443630905, 3.413391517558518, 3.915790127507644, 4.726705427686998, 5.239034889239352, 5.813481085456443, 6.429323240082592, 7.043376970664986, 7.502630837324864, 8.050869368308718, 8.914080115976554, 9.452012435535964, 9.807748021734198, 10.40206010584529, 11.11661459173352, 11.40318639148790, 12.09070456951597, 12.62968927777788, 12.85622770050148, 13.60970252631797, 14.16675516080343, 14.71223224290228, 15.24664771464607

Graph of the $Z$-function along the critical line