Properties

Label 2-35700-1.1-c1-0-17
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 13-s + 17-s + 8·19-s + 21-s + 5·23-s + 27-s − 2·29-s + 5·31-s + 3·37-s − 39-s − 3·41-s + 12·43-s + 3·47-s + 49-s + 51-s + 12·53-s + 8·57-s + 12·59-s + 11·61-s + 63-s − 2·67-s + 5·69-s + 10·71-s − 8·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.277·13-s + 0.242·17-s + 1.83·19-s + 0.218·21-s + 1.04·23-s + 0.192·27-s − 0.371·29-s + 0.898·31-s + 0.493·37-s − 0.160·39-s − 0.468·41-s + 1.82·43-s + 0.437·47-s + 1/7·49-s + 0.140·51-s + 1.64·53-s + 1.05·57-s + 1.56·59-s + 1.40·61-s + 0.125·63-s − 0.244·67-s + 0.601·69-s + 1.18·71-s − 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.071620961\)
\(L(\frac12)\) \(\approx\) \(4.071620961\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.80120331548287, −14.47571311147842, −13.84656610873337, −13.49689696084687, −12.88139596884976, −12.34561076421120, −11.60713962006239, −11.45528214520242, −10.61253867327357, −10.02335875934453, −9.622338462503315, −8.977305998640766, −8.546408452196938, −7.838029223374127, −7.329476940491317, −7.014748135492310, −6.105402797518533, −5.324343699820743, −5.088403172273925, −4.111040262013181, −3.686850959753963, −2.728144076806841, −2.490155103477837, −1.298858947676682, −0.8231289185156980, 0.8231289185156980, 1.298858947676682, 2.490155103477837, 2.728144076806841, 3.686850959753963, 4.111040262013181, 5.088403172273925, 5.324343699820743, 6.105402797518533, 7.014748135492310, 7.329476940491317, 7.838029223374127, 8.546408452196938, 8.977305998640766, 9.622338462503315, 10.02335875934453, 10.61253867327357, 11.45528214520242, 11.60713962006239, 12.34561076421120, 12.88139596884976, 13.49689696084687, 13.84656610873337, 14.47571311147842, 14.80120331548287

Graph of the $Z$-function along the critical line