Properties

Label 2-348726-1.1-c1-0-5
Degree $2$
Conductor $348726$
Sign $1$
Analytic cond. $2784.59$
Root an. cond. $52.7692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 2·5-s − 6-s + 7-s + 8-s + 9-s − 2·10-s − 2·11-s − 12-s − 6·13-s + 14-s + 2·15-s + 16-s + 2·17-s + 18-s − 2·20-s − 21-s − 2·22-s − 23-s − 24-s − 25-s − 6·26-s − 27-s + 28-s + 2·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 0.603·11-s − 0.288·12-s − 1.66·13-s + 0.267·14-s + 0.516·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.447·20-s − 0.218·21-s − 0.426·22-s − 0.208·23-s − 0.204·24-s − 1/5·25-s − 1.17·26-s − 0.192·27-s + 0.188·28-s + 0.371·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348726\)    =    \(2 \cdot 3 \cdot 7 \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(2784.59\)
Root analytic conductor: \(52.7692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 348726,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.954950765\)
\(L(\frac12)\) \(\approx\) \(1.954950765\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32449928543436, −12.19265778115671, −11.86902234217587, −11.18498857279086, −10.87555636251491, −10.51749089077470, −9.930137265816703, −9.445672496774493, −8.957595284377276, −8.197172816666080, −7.647888873416542, −7.542454242515189, −7.108056338017001, −6.526346434517065, −5.693382702502717, −5.593156779335417, −4.940205342829537, −4.636086264452788, −3.993583396067324, −3.664044484107486, −2.961533413762733, −2.238510683426608, −2.039918157324580, −0.9365756527478571, −0.3876645373207839, 0.3876645373207839, 0.9365756527478571, 2.039918157324580, 2.238510683426608, 2.961533413762733, 3.664044484107486, 3.993583396067324, 4.636086264452788, 4.940205342829537, 5.593156779335417, 5.693382702502717, 6.526346434517065, 7.108056338017001, 7.542454242515189, 7.647888873416542, 8.197172816666080, 8.957595284377276, 9.445672496774493, 9.930137265816703, 10.51749089077470, 10.87555636251491, 11.18498857279086, 11.86902234217587, 12.19265778115671, 12.32449928543436

Graph of the $Z$-function along the critical line