Properties

Label 2-33600-1.1-c1-0-118
Degree $2$
Conductor $33600$
Sign $1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 4·11-s + 2·13-s + 2·17-s + 21-s + 4·23-s + 27-s − 2·29-s + 8·31-s + 4·33-s + 10·37-s + 2·39-s + 2·41-s + 4·43-s − 4·47-s + 49-s + 2·51-s + 10·53-s − 4·59-s + 2·61-s + 63-s + 4·67-s + 4·69-s + 6·73-s + 4·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.485·17-s + 0.218·21-s + 0.834·23-s + 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.696·33-s + 1.64·37-s + 0.320·39-s + 0.312·41-s + 0.609·43-s − 0.583·47-s + 1/7·49-s + 0.280·51-s + 1.37·53-s − 0.520·59-s + 0.256·61-s + 0.125·63-s + 0.488·67-s + 0.481·69-s + 0.702·73-s + 0.455·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.528510741\)
\(L(\frac12)\) \(\approx\) \(4.528510741\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.98556934264286, −14.47782954759193, −13.97828963295777, −13.54566101674646, −12.94538256282448, −12.39310047333217, −11.77588838422654, −11.33484166654984, −10.81093002177669, −10.11298442685907, −9.450194083835704, −9.208715134151925, −8.408973061117688, −8.114377525953025, −7.393117843478716, −6.793410790596058, −6.245911472390455, −5.621337032681776, −4.812616896540726, −4.185822544820184, −3.719294808895457, −2.931350909375479, −2.301840138699133, −1.305621840928214, −0.9012603511389187, 0.9012603511389187, 1.305621840928214, 2.301840138699133, 2.931350909375479, 3.719294808895457, 4.185822544820184, 4.812616896540726, 5.621337032681776, 6.245911472390455, 6.793410790596058, 7.393117843478716, 8.114377525953025, 8.408973061117688, 9.208715134151925, 9.450194083835704, 10.11298442685907, 10.81093002177669, 11.33484166654984, 11.77588838422654, 12.39310047333217, 12.94538256282448, 13.54566101674646, 13.97828963295777, 14.47782954759193, 14.98556934264286

Graph of the $Z$-function along the critical line