Properties

Label 2-3276-1.1-c1-0-6
Degree $2$
Conductor $3276$
Sign $1$
Analytic cond. $26.1589$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 4·11-s + 13-s + 2·17-s − 19-s + 7·23-s − 4·25-s + 5·29-s − 9·31-s + 35-s − 2·37-s − 2·41-s + 43-s − 9·47-s + 49-s − 3·53-s − 4·55-s + 14·61-s − 65-s + 10·67-s + 14·71-s + 3·73-s − 4·77-s + 5·79-s − 5·83-s − 2·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 1.20·11-s + 0.277·13-s + 0.485·17-s − 0.229·19-s + 1.45·23-s − 4/5·25-s + 0.928·29-s − 1.61·31-s + 0.169·35-s − 0.328·37-s − 0.312·41-s + 0.152·43-s − 1.31·47-s + 1/7·49-s − 0.412·53-s − 0.539·55-s + 1.79·61-s − 0.124·65-s + 1.22·67-s + 1.66·71-s + 0.351·73-s − 0.455·77-s + 0.562·79-s − 0.548·83-s − 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3276\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(26.1589\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3276,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.726250254\)
\(L(\frac12)\) \(\approx\) \(1.726250254\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.659289985713125227592623388003, −7.955642571147852594550953093808, −6.98922741538970774574128366775, −6.59017971264705563997918730771, −5.62211935026791674353981798082, −4.77787393100694552394235825339, −3.75236091962915980617404931771, −3.33196922399387879734203086692, −1.96825721966258824948558752660, −0.804468343646160551982995326924, 0.804468343646160551982995326924, 1.96825721966258824948558752660, 3.33196922399387879734203086692, 3.75236091962915980617404931771, 4.77787393100694552394235825339, 5.62211935026791674353981798082, 6.59017971264705563997918730771, 6.98922741538970774574128366775, 7.955642571147852594550953093808, 8.659289985713125227592623388003

Graph of the $Z$-function along the critical line