| L(s) = 1 | − 3-s − 2·7-s + 9-s − 2·11-s + 13-s − 6·17-s + 2·19-s + 2·21-s − 27-s + 2·29-s − 2·31-s + 2·33-s − 10·37-s − 39-s + 2·41-s + 8·43-s − 2·47-s − 3·49-s + 6·51-s + 2·53-s − 2·57-s − 10·59-s + 6·61-s − 2·63-s + 14·67-s + 14·71-s + 6·73-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.277·13-s − 1.45·17-s + 0.458·19-s + 0.436·21-s − 0.192·27-s + 0.371·29-s − 0.359·31-s + 0.348·33-s − 1.64·37-s − 0.160·39-s + 0.312·41-s + 1.21·43-s − 0.291·47-s − 3/7·49-s + 0.840·51-s + 0.274·53-s − 0.264·57-s − 1.30·59-s + 0.768·61-s − 0.251·63-s + 1.71·67-s + 1.66·71-s + 0.702·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 31200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 + T \) | |
| 5 | \( 1 \) | |
| 13 | \( 1 - T \) | |
| good | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c |
| 11 | \( 1 + 2 T + p T^{2} \) | 1.11.c |
| 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g |
| 19 | \( 1 - 2 T + p T^{2} \) | 1.19.ac |
| 23 | \( 1 + p T^{2} \) | 1.23.a |
| 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac |
| 31 | \( 1 + 2 T + p T^{2} \) | 1.31.c |
| 37 | \( 1 + 10 T + p T^{2} \) | 1.37.k |
| 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac |
| 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai |
| 47 | \( 1 + 2 T + p T^{2} \) | 1.47.c |
| 53 | \( 1 - 2 T + p T^{2} \) | 1.53.ac |
| 59 | \( 1 + 10 T + p T^{2} \) | 1.59.k |
| 61 | \( 1 - 6 T + p T^{2} \) | 1.61.ag |
| 67 | \( 1 - 14 T + p T^{2} \) | 1.67.ao |
| 71 | \( 1 - 14 T + p T^{2} \) | 1.71.ao |
| 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag |
| 79 | \( 1 - 4 T + p T^{2} \) | 1.79.ae |
| 83 | \( 1 - 6 T + p T^{2} \) | 1.83.ag |
| 89 | \( 1 - 10 T + p T^{2} \) | 1.89.ak |
| 97 | \( 1 + 10 T + p T^{2} \) | 1.97.k |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.58606537474117, −15.01029480001453, −14.06701209152272, −13.81116352266592, −13.12220739684228, −12.70043368352472, −12.30033541218368, −11.56603097016458, −11.00669813196282, −10.66496909854000, −10.05634034568496, −9.386563551642428, −9.024326190578648, −8.244830990826020, −7.696638904793619, −6.834642729130401, −6.653558992532730, −5.952927809812633, −5.252880397254994, −4.821143052678029, −3.957314961489214, −3.433282148373101, −2.557960923681036, −1.924748860886868, −0.8122358197898018, 0,
0.8122358197898018, 1.924748860886868, 2.557960923681036, 3.433282148373101, 3.957314961489214, 4.821143052678029, 5.252880397254994, 5.952927809812633, 6.653558992532730, 6.834642729130401, 7.696638904793619, 8.244830990826020, 9.024326190578648, 9.386563551642428, 10.05634034568496, 10.66496909854000, 11.00669813196282, 11.56603097016458, 12.30033541218368, 12.70043368352472, 13.12220739684228, 13.81116352266592, 14.06701209152272, 15.01029480001453, 15.58606537474117