Properties

Label 2-309680-1.1-c1-0-35
Degree $2$
Conductor $309680$
Sign $-1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·9-s − 3·11-s + 13-s + 15-s + 5·17-s − 6·19-s − 4·23-s + 25-s + 5·27-s + 6·29-s + 7·31-s + 3·33-s − 11·37-s − 39-s + 6·41-s − 4·43-s + 2·45-s + 2·47-s − 5·51-s + 53-s + 3·55-s + 6·57-s + 11·59-s − 65-s + 7·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 2/3·9-s − 0.904·11-s + 0.277·13-s + 0.258·15-s + 1.21·17-s − 1.37·19-s − 0.834·23-s + 1/5·25-s + 0.962·27-s + 1.11·29-s + 1.25·31-s + 0.522·33-s − 1.80·37-s − 0.160·39-s + 0.937·41-s − 0.609·43-s + 0.298·45-s + 0.291·47-s − 0.700·51-s + 0.137·53-s + 0.404·55-s + 0.794·57-s + 1.43·59-s − 0.124·65-s + 0.855·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + p T^{2} \) 1.73.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74762842638820, −12.27723256889578, −11.95299756366205, −11.71172698769431, −10.93548106088473, −10.63662322807595, −10.28636690141805, −9.897850024532389, −9.165093031029789, −8.519532716867235, −8.220805099836614, −8.043844863476531, −7.265759876336578, −6.741057071396136, −6.292787672028045, −5.847550093635374, −5.243953720525417, −5.020260360697092, −4.253961256040512, −3.855290982502420, −3.146511024313485, −2.687987283419861, −2.153090231968030, −1.283973154379122, −0.6138053820497914, 0, 0.6138053820497914, 1.283973154379122, 2.153090231968030, 2.687987283419861, 3.146511024313485, 3.855290982502420, 4.253961256040512, 5.020260360697092, 5.243953720525417, 5.847550093635374, 6.292787672028045, 6.741057071396136, 7.265759876336578, 8.043844863476531, 8.220805099836614, 8.519532716867235, 9.165093031029789, 9.897850024532389, 10.28636690141805, 10.63662322807595, 10.93548106088473, 11.71172698769431, 11.95299756366205, 12.27723256889578, 12.74762842638820

Graph of the $Z$-function along the critical line