Properties

Label 2-3060-1.1-c1-0-20
Degree $2$
Conductor $3060$
Sign $-1$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 3·11-s − 4·13-s + 17-s + 5·19-s − 6·23-s + 25-s − 3·29-s − 4·31-s + 35-s + 5·37-s + 9·41-s − 10·43-s − 3·47-s − 6·49-s + 3·53-s − 3·55-s + 12·59-s − 10·61-s + 4·65-s − 10·67-s − 73-s − 3·77-s − 4·79-s − 12·83-s − 85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.904·11-s − 1.10·13-s + 0.242·17-s + 1.14·19-s − 1.25·23-s + 1/5·25-s − 0.557·29-s − 0.718·31-s + 0.169·35-s + 0.821·37-s + 1.40·41-s − 1.52·43-s − 0.437·47-s − 6/7·49-s + 0.412·53-s − 0.404·55-s + 1.56·59-s − 1.28·61-s + 0.496·65-s − 1.22·67-s − 0.117·73-s − 0.341·77-s − 0.450·79-s − 1.31·83-s − 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.219288169141741569681195274145, −7.56001677968101544218010762238, −6.94897865497580997612971878899, −6.06828456918375522219020208549, −5.27739351736528468546333279040, −4.31866223394593001645605432652, −3.59992371204925941933436012016, −2.67504292094169190142703846281, −1.45040595831206287698471929946, 0, 1.45040595831206287698471929946, 2.67504292094169190142703846281, 3.59992371204925941933436012016, 4.31866223394593001645605432652, 5.27739351736528468546333279040, 6.06828456918375522219020208549, 6.94897865497580997612971878899, 7.56001677968101544218010762238, 8.219288169141741569681195274145

Graph of the $Z$-function along the critical line