Properties

Label 2-3060-1.1-c1-0-10
Degree $2$
Conductor $3060$
Sign $1$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 4·11-s + 6·13-s − 17-s + 4·19-s − 4·23-s + 25-s + 6·29-s − 2·31-s − 4·35-s + 10·41-s − 4·43-s + 2·47-s + 9·49-s − 2·53-s + 4·55-s − 10·61-s − 6·65-s − 4·67-s + 16·71-s − 8·73-s − 16·77-s + 10·79-s + 10·83-s + 85-s + 24·91-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 1.20·11-s + 1.66·13-s − 0.242·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 0.359·31-s − 0.676·35-s + 1.56·41-s − 0.609·43-s + 0.291·47-s + 9/7·49-s − 0.274·53-s + 0.539·55-s − 1.28·61-s − 0.744·65-s − 0.488·67-s + 1.89·71-s − 0.936·73-s − 1.82·77-s + 1.12·79-s + 1.09·83-s + 0.108·85-s + 2.51·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.099713479\)
\(L(\frac12)\) \(\approx\) \(2.099713479\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.475225904347930953202080845574, −7.970268829306120912317948428178, −7.54460349786155851189971750256, −6.37731656427454218605614709307, −5.56367536685584858158354287801, −4.84226702337758616223632806375, −4.08886985666447118980096603047, −3.10645511772208776776866655724, −1.97794887158850689743669643855, −0.926045851906879699244746082283, 0.926045851906879699244746082283, 1.97794887158850689743669643855, 3.10645511772208776776866655724, 4.08886985666447118980096603047, 4.84226702337758616223632806375, 5.56367536685584858158354287801, 6.37731656427454218605614709307, 7.54460349786155851189971750256, 7.970268829306120912317948428178, 8.475225904347930953202080845574

Graph of the $Z$-function along the critical line