Properties

Label 2-30420-1.1-c1-0-14
Degree $2$
Conductor $30420$
Sign $-1$
Analytic cond. $242.904$
Root an. cond. $15.5854$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s + 6·11-s − 6·17-s − 2·23-s + 25-s − 8·29-s − 3·31-s + 3·35-s − 6·37-s + 2·41-s + 11·43-s + 12·47-s + 2·49-s + 12·53-s − 6·55-s + 15·61-s + 5·67-s − 8·71-s + 5·73-s − 18·77-s − 15·79-s − 8·83-s + 6·85-s − 6·89-s + 97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s + 1.80·11-s − 1.45·17-s − 0.417·23-s + 1/5·25-s − 1.48·29-s − 0.538·31-s + 0.507·35-s − 0.986·37-s + 0.312·41-s + 1.67·43-s + 1.75·47-s + 2/7·49-s + 1.64·53-s − 0.809·55-s + 1.92·61-s + 0.610·67-s − 0.949·71-s + 0.585·73-s − 2.05·77-s − 1.68·79-s − 0.878·83-s + 0.650·85-s − 0.635·89-s + 0.101·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30420\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(242.904\)
Root analytic conductor: \(15.5854\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30420,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 15 T + p T^{2} \) 1.79.p
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.50444755579228, −14.86031755606210, −14.30799919671729, −13.88117303751555, −13.13048924920842, −12.78870855496453, −12.21086538692929, −11.62393085651247, −11.23691760066036, −10.60900678225736, −9.925103348684182, −9.303263348768552, −8.945411573557880, −8.583964400509585, −7.520585009787014, −6.970067488195117, −6.745152208324761, −5.912964959311344, −5.538658366928315, −4.310202346927237, −4.000480775144036, −3.587697188098660, −2.605585264812545, −1.927953912285276, −0.9055067030351425, 0, 0.9055067030351425, 1.927953912285276, 2.605585264812545, 3.587697188098660, 4.000480775144036, 4.310202346927237, 5.538658366928315, 5.912964959311344, 6.745152208324761, 6.970067488195117, 7.520585009787014, 8.583964400509585, 8.945411573557880, 9.303263348768552, 9.925103348684182, 10.60900678225736, 11.23691760066036, 11.62393085651247, 12.21086538692929, 12.78870855496453, 13.13048924920842, 13.88117303751555, 14.30799919671729, 14.86031755606210, 15.50444755579228

Graph of the $Z$-function along the critical line