Properties

Label 2-2989-1.1-c1-0-85
Degree $2$
Conductor $2989$
Sign $-1$
Analytic cond. $23.8672$
Root an. cond. $4.88541$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s + 6-s + 3·8-s − 2·9-s − 5·11-s + 12-s − 4·13-s − 16-s + 5·17-s + 2·18-s + 7·19-s + 5·22-s + 9·23-s − 3·24-s − 5·25-s + 4·26-s + 5·27-s − 6·29-s − 5·32-s + 5·33-s − 5·34-s + 2·36-s + 2·37-s − 7·38-s + 4·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.408·6-s + 1.06·8-s − 2/3·9-s − 1.50·11-s + 0.288·12-s − 1.10·13-s − 1/4·16-s + 1.21·17-s + 0.471·18-s + 1.60·19-s + 1.06·22-s + 1.87·23-s − 0.612·24-s − 25-s + 0.784·26-s + 0.962·27-s − 1.11·29-s − 0.883·32-s + 0.870·33-s − 0.857·34-s + 1/3·36-s + 0.328·37-s − 1.13·38-s + 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2989 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2989 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2989\)    =    \(7^{2} \cdot 61\)
Sign: $-1$
Analytic conductor: \(23.8672\)
Root analytic conductor: \(4.88541\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2989,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
61 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.276308518186042246301121116411, −7.57225698586501730555949075144, −7.32467701430304040457171363886, −5.80221863560049773222755509516, −5.25105947275816693832766178702, −4.83834375315262096804429262427, −3.41234100838815627421664551588, −2.56873908396028409297284428013, −1.04409936087548574536101154677, 0, 1.04409936087548574536101154677, 2.56873908396028409297284428013, 3.41234100838815627421664551588, 4.83834375315262096804429262427, 5.25105947275816693832766178702, 5.80221863560049773222755509516, 7.32467701430304040457171363886, 7.57225698586501730555949075144, 8.276308518186042246301121116411

Graph of the $Z$-function along the critical line