Properties

Label 2-2960-1.1-c1-0-36
Degree $2$
Conductor $2960$
Sign $1$
Analytic cond. $23.6357$
Root an. cond. $4.86165$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 3·7-s − 2·9-s + 5·11-s + 4·13-s + 15-s − 4·17-s + 8·19-s + 3·21-s − 4·23-s + 25-s − 5·27-s + 4·29-s − 2·31-s + 5·33-s + 3·35-s + 37-s + 4·39-s − 5·41-s + 6·43-s − 2·45-s − 9·47-s + 2·49-s − 4·51-s + 3·53-s + 5·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.13·7-s − 2/3·9-s + 1.50·11-s + 1.10·13-s + 0.258·15-s − 0.970·17-s + 1.83·19-s + 0.654·21-s − 0.834·23-s + 1/5·25-s − 0.962·27-s + 0.742·29-s − 0.359·31-s + 0.870·33-s + 0.507·35-s + 0.164·37-s + 0.640·39-s − 0.780·41-s + 0.914·43-s − 0.298·45-s − 1.31·47-s + 2/7·49-s − 0.560·51-s + 0.412·53-s + 0.674·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2960\)    =    \(2^{4} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(23.6357\)
Root analytic conductor: \(4.86165\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.152386725\)
\(L(\frac12)\) \(\approx\) \(3.152386725\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
37 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.759558258871026004521818336444, −8.186433202743037417632015261638, −7.34245287835085792063157381447, −6.39344195974738925783632861954, −5.76546523585426885170756070202, −4.82959370676374676230940604175, −3.92637670973397291184766507979, −3.13141667245378763659368593597, −1.95088846348121714736358118750, −1.19620939459244487628546154310, 1.19620939459244487628546154310, 1.95088846348121714736358118750, 3.13141667245378763659368593597, 3.92637670973397291184766507979, 4.82959370676374676230940604175, 5.76546523585426885170756070202, 6.39344195974738925783632861954, 7.34245287835085792063157381447, 8.186433202743037417632015261638, 8.759558258871026004521818336444

Graph of the $Z$-function along the critical line