Properties

Label 2-295659-1.1-c1-0-21
Degree $2$
Conductor $295659$
Sign $-1$
Analytic cond. $2360.84$
Root an. cond. $48.5885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 5-s − 7-s + 2·10-s − 13-s + 2·14-s − 4·16-s + 6·17-s − 2·20-s + 4·23-s − 4·25-s + 2·26-s − 2·28-s − 9·29-s + 9·31-s + 8·32-s − 12·34-s + 35-s − 4·37-s + 9·41-s − 43-s − 8·46-s + 49-s + 8·50-s − 2·52-s − 9·53-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 0.447·5-s − 0.377·7-s + 0.632·10-s − 0.277·13-s + 0.534·14-s − 16-s + 1.45·17-s − 0.447·20-s + 0.834·23-s − 4/5·25-s + 0.392·26-s − 0.377·28-s − 1.67·29-s + 1.61·31-s + 1.41·32-s − 2.05·34-s + 0.169·35-s − 0.657·37-s + 1.40·41-s − 0.152·43-s − 1.17·46-s + 1/7·49-s + 1.13·50-s − 0.277·52-s − 1.23·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(295659\)    =    \(3^{2} \cdot 7 \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2360.84\)
Root analytic conductor: \(48.5885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 295659,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
19 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77553609557539, −12.29160928619380, −12.01048894526007, −11.35212359597415, −10.97318302347049, −10.62904042654571, −9.983031554398617, −9.518618290718178, −9.505811971965765, −8.819915130212179, −8.235974194853664, −7.811900475573389, −7.635420903564132, −7.013627563785837, −6.620723250588306, −5.894153119585929, −5.510882025733275, −4.805592100050931, −4.266897414436892, −3.700361972385282, −3.053451687484094, −2.623037681147846, −1.771344982549337, −1.307260303182898, −0.6309828939466900, 0, 0.6309828939466900, 1.307260303182898, 1.771344982549337, 2.623037681147846, 3.053451687484094, 3.700361972385282, 4.266897414436892, 4.805592100050931, 5.510882025733275, 5.894153119585929, 6.620723250588306, 7.013627563785837, 7.635420903564132, 7.811900475573389, 8.235974194853664, 8.819915130212179, 9.505811971965765, 9.518618290718178, 9.983031554398617, 10.62904042654571, 10.97318302347049, 11.35212359597415, 12.01048894526007, 12.29160928619380, 12.77553609557539

Graph of the $Z$-function along the critical line