Properties

Label 2-2856-1.1-c1-0-45
Degree $2$
Conductor $2856$
Sign $-1$
Analytic cond. $22.8052$
Root an. cond. $4.77548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 7-s + 9-s + 11-s − 3·13-s − 15-s + 17-s − 5·19-s + 21-s − 7·23-s − 4·25-s + 27-s − 6·29-s − 4·31-s + 33-s − 35-s − 2·37-s − 3·39-s − 3·41-s + 7·43-s − 45-s + 4·47-s + 49-s + 51-s − 55-s − 5·57-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.832·13-s − 0.258·15-s + 0.242·17-s − 1.14·19-s + 0.218·21-s − 1.45·23-s − 4/5·25-s + 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.174·33-s − 0.169·35-s − 0.328·37-s − 0.480·39-s − 0.468·41-s + 1.06·43-s − 0.149·45-s + 0.583·47-s + 1/7·49-s + 0.140·51-s − 0.134·55-s − 0.662·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2856\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(22.8052\)
Root analytic conductor: \(4.77548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2856,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.327962755523184219820362608650, −7.70732686237876575774406809388, −7.13488506783359951593528172749, −6.11380301370410518982512512718, −5.27865595149170458917012993184, −4.16036918305284879258260652404, −3.81627007630246057783038496567, −2.49554752778291095006682600923, −1.74167488209179237546729397318, 0, 1.74167488209179237546729397318, 2.49554752778291095006682600923, 3.81627007630246057783038496567, 4.16036918305284879258260652404, 5.27865595149170458917012993184, 6.11380301370410518982512512718, 7.13488506783359951593528172749, 7.70732686237876575774406809388, 8.327962755523184219820362608650

Graph of the $Z$-function along the critical line