Properties

Label 2-281775-1.1-c1-0-38
Degree $2$
Conductor $281775$
Sign $-1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 3·7-s − 3·8-s + 9-s − 2·11-s − 12-s − 13-s − 3·14-s − 16-s + 18-s + 5·19-s − 3·21-s − 2·22-s + 3·23-s − 3·24-s − 26-s + 27-s + 3·28-s + 4·29-s + 4·31-s + 5·32-s − 2·33-s − 36-s + 2·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 1.13·7-s − 1.06·8-s + 1/3·9-s − 0.603·11-s − 0.288·12-s − 0.277·13-s − 0.801·14-s − 1/4·16-s + 0.235·18-s + 1.14·19-s − 0.654·21-s − 0.426·22-s + 0.625·23-s − 0.612·24-s − 0.196·26-s + 0.192·27-s + 0.566·28-s + 0.742·29-s + 0.718·31-s + 0.883·32-s − 0.348·33-s − 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95792572167512, −12.70578604633754, −12.15358113777083, −11.93944059708002, −11.14244629226096, −10.61910391744576, −10.10565986148437, −9.619233736841630, −9.334644574294131, −8.973820712097830, −8.333220913766268, −7.768564047587290, −7.503439982852128, −6.636905620584262, −6.449120995372212, −5.780897862250137, −5.299671464345294, −4.780000434585277, −4.362247349285538, −3.688265611532973, −3.261250898848967, −2.723891817023044, −2.585934952536099, −1.406722244384717, −0.7435772058695952, 0, 0.7435772058695952, 1.406722244384717, 2.585934952536099, 2.723891817023044, 3.261250898848967, 3.688265611532973, 4.362247349285538, 4.780000434585277, 5.299671464345294, 5.780897862250137, 6.449120995372212, 6.636905620584262, 7.503439982852128, 7.768564047587290, 8.333220913766268, 8.973820712097830, 9.334644574294131, 9.619233736841630, 10.10565986148437, 10.61910391744576, 11.14244629226096, 11.93944059708002, 12.15358113777083, 12.70578604633754, 12.95792572167512

Graph of the $Z$-function along the critical line