Properties

Label 2-281775-1.1-c1-0-26
Degree $2$
Conductor $281775$
Sign $-1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s − 2·6-s − 7-s + 9-s − 5·11-s + 2·12-s + 13-s + 2·14-s − 4·16-s − 2·18-s − 6·19-s − 21-s + 10·22-s + 3·23-s − 2·26-s + 27-s − 2·28-s − 2·29-s − 2·31-s + 8·32-s − 5·33-s + 2·36-s + 7·37-s + 12·38-s + 39-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s − 0.816·6-s − 0.377·7-s + 1/3·9-s − 1.50·11-s + 0.577·12-s + 0.277·13-s + 0.534·14-s − 16-s − 0.471·18-s − 1.37·19-s − 0.218·21-s + 2.13·22-s + 0.625·23-s − 0.392·26-s + 0.192·27-s − 0.377·28-s − 0.371·29-s − 0.359·31-s + 1.41·32-s − 0.870·33-s + 1/3·36-s + 1.15·37-s + 1.94·38-s + 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 5 T + p T^{2} \) 1.11.f
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12677969533865, −12.59574454816701, −12.04565464941278, −11.14195820716384, −11.05094239647208, −10.58685865588309, −10.08464279879917, −9.701792744541333, −9.312695606967501, −8.663502747913812, −8.497378025929014, −7.856539657379730, −7.692878610959794, −7.082530738762080, −6.533528909344967, −6.136766591625867, −5.384705344500091, −4.770225689549434, −4.389443711394286, −3.618947082659860, −2.981946251457358, −2.568816018817765, −1.920902615297584, −1.486993528314810, −0.5539898100374472, 0, 0.5539898100374472, 1.486993528314810, 1.920902615297584, 2.568816018817765, 2.981946251457358, 3.618947082659860, 4.389443711394286, 4.770225689549434, 5.384705344500091, 6.136766591625867, 6.533528909344967, 7.082530738762080, 7.692878610959794, 7.856539657379730, 8.497378025929014, 8.663502747913812, 9.312695606967501, 9.701792744541333, 10.08464279879917, 10.58685865588309, 11.05094239647208, 11.14195820716384, 12.04565464941278, 12.59574454816701, 13.12677969533865

Graph of the $Z$-function along the critical line