Properties

Label 2-280e2-1.1-c1-0-130
Degree $2$
Conductor $78400$
Sign $-1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6·9-s − 5·11-s + 5·13-s − 7·17-s + 2·19-s − 2·23-s − 9·27-s − 7·29-s + 4·31-s + 15·33-s − 6·37-s − 15·39-s + 12·41-s + 2·43-s − 47-s + 21·51-s − 6·57-s + 4·59-s + 4·61-s − 8·67-s + 6·69-s + 6·73-s + 3·79-s + 9·81-s − 4·83-s + 21·87-s + ⋯
L(s)  = 1  − 1.73·3-s + 2·9-s − 1.50·11-s + 1.38·13-s − 1.69·17-s + 0.458·19-s − 0.417·23-s − 1.73·27-s − 1.29·29-s + 0.718·31-s + 2.61·33-s − 0.986·37-s − 2.40·39-s + 1.87·41-s + 0.304·43-s − 0.145·47-s + 2.94·51-s − 0.794·57-s + 0.520·59-s + 0.512·61-s − 0.977·67-s + 0.722·69-s + 0.702·73-s + 0.337·79-s + 81-s − 0.439·83-s + 2.25·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.11526918674892, −13.46969458668573, −13.16159802156580, −12.87786563772831, −12.15512065015880, −11.73669568225328, −11.07090190480642, −10.85806819455907, −10.63599056235986, −9.905457760434397, −9.324968830771289, −8.728480162480104, −8.036636754234313, −7.587193030369635, −6.852909936458900, −6.506324222044055, −5.872799614327187, −5.475512067141962, −5.082050601440265, −4.219666384449032, −4.045991434723704, −2.986942252531515, −2.236415470277040, −1.501630526306967, −0.6570902229918673, 0, 0.6570902229918673, 1.501630526306967, 2.236415470277040, 2.986942252531515, 4.045991434723704, 4.219666384449032, 5.082050601440265, 5.475512067141962, 5.872799614327187, 6.506324222044055, 6.852909936458900, 7.587193030369635, 8.036636754234313, 8.728480162480104, 9.324968830771289, 9.905457760434397, 10.63599056235986, 10.85806819455907, 11.07090190480642, 11.73669568225328, 12.15512065015880, 12.87786563772831, 13.16159802156580, 13.46969458668573, 14.11526918674892

Graph of the $Z$-function along the critical line