Properties

Label 2-280e2-1.1-c1-0-110
Degree $2$
Conductor $78400$
Sign $1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 6·9-s + 11-s + 13-s − 3·17-s − 8·19-s + 4·23-s + 9·27-s − 3·29-s − 6·31-s + 3·33-s − 8·37-s + 3·39-s − 10·41-s + 12·43-s − 3·47-s − 9·51-s + 12·53-s − 24·57-s + 2·61-s − 4·67-s + 12·69-s + 12·71-s − 10·73-s + 13·79-s + 9·81-s − 9·87-s + ⋯
L(s)  = 1  + 1.73·3-s + 2·9-s + 0.301·11-s + 0.277·13-s − 0.727·17-s − 1.83·19-s + 0.834·23-s + 1.73·27-s − 0.557·29-s − 1.07·31-s + 0.522·33-s − 1.31·37-s + 0.480·39-s − 1.56·41-s + 1.82·43-s − 0.437·47-s − 1.26·51-s + 1.64·53-s − 3.17·57-s + 0.256·61-s − 0.488·67-s + 1.44·69-s + 1.42·71-s − 1.17·73-s + 1.46·79-s + 81-s − 0.964·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.547495133\)
\(L(\frac12)\) \(\approx\) \(4.547495133\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.01508318997658, −13.56120999891518, −13.12742136946203, −12.72297103388298, −12.29133338905016, −11.41930106935159, −10.95591755530336, −10.36392844847368, −10.01816161586744, −9.082440906116415, −8.905308588048368, −8.714493630660579, −7.992100752886506, −7.454699587094179, −6.907466377739160, −6.530770877781646, −5.728955742537122, −4.945121689814424, −4.341074109919075, −3.758084286571246, −3.450736165507659, −2.627944825017881, −2.013882841087742, −1.740813204327387, −0.5864898171656120, 0.5864898171656120, 1.740813204327387, 2.013882841087742, 2.627944825017881, 3.450736165507659, 3.758084286571246, 4.341074109919075, 4.945121689814424, 5.728955742537122, 6.530770877781646, 6.907466377739160, 7.454699587094179, 7.992100752886506, 8.714493630660579, 8.905308588048368, 9.082440906116415, 10.01816161586744, 10.36392844847368, 10.95591755530336, 11.41930106935159, 12.29133338905016, 12.72297103388298, 13.12742136946203, 13.56120999891518, 14.01508318997658

Graph of the $Z$-function along the critical line