Properties

Label 2-266175-1.1-c1-0-124
Degree $2$
Conductor $266175$
Sign $1$
Analytic cond. $2125.41$
Root an. cond. $46.1022$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 7-s + 5·11-s + 4·16-s − 7·17-s − 8·19-s − 6·23-s − 2·28-s + 5·29-s − 2·31-s − 6·37-s − 12·41-s + 2·43-s − 10·44-s − 47-s + 49-s + 2·53-s − 8·59-s − 2·61-s − 8·64-s − 10·67-s + 14·68-s + 5·71-s + 11·73-s + 16·76-s + 5·77-s − 8·79-s + ⋯
L(s)  = 1  − 4-s + 0.377·7-s + 1.50·11-s + 16-s − 1.69·17-s − 1.83·19-s − 1.25·23-s − 0.377·28-s + 0.928·29-s − 0.359·31-s − 0.986·37-s − 1.87·41-s + 0.304·43-s − 1.50·44-s − 0.145·47-s + 1/7·49-s + 0.274·53-s − 1.04·59-s − 0.256·61-s − 64-s − 1.22·67-s + 1.69·68-s + 0.593·71-s + 1.28·73-s + 1.83·76-s + 0.569·77-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266175\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2125.41\)
Root analytic conductor: \(46.1022\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 266175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42527902436282, −12.69541054573413, −12.36892458812328, −11.99091934524081, −11.43388323484851, −10.90804827814064, −10.48192398086575, −10.02521951151284, −9.475619087882348, −8.880308675428411, −8.731890256268640, −8.333379555368166, −7.825166712629088, −6.987661924579134, −6.564039544056256, −6.309964480797901, −5.647748784294174, −4.946556737430776, −4.533252000800445, −4.051426720072456, −3.872363151824100, −3.066070376144725, −2.206293098330392, −1.755493037388824, −1.194062467441160, 0, 0, 1.194062467441160, 1.755493037388824, 2.206293098330392, 3.066070376144725, 3.872363151824100, 4.051426720072456, 4.533252000800445, 4.946556737430776, 5.647748784294174, 6.309964480797901, 6.564039544056256, 6.987661924579134, 7.825166712629088, 8.333379555368166, 8.731890256268640, 8.880308675428411, 9.475619087882348, 10.02521951151284, 10.48192398086575, 10.90804827814064, 11.43388323484851, 11.99091934524081, 12.36892458812328, 12.69541054573413, 13.42527902436282

Graph of the $Z$-function along the critical line