Properties

Label 2-255162-1.1-c1-0-25
Degree $2$
Conductor $255162$
Sign $-1$
Analytic cond. $2037.47$
Root an. cond. $45.1384$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 2·5-s − 6-s + 2·7-s + 8-s + 9-s − 2·10-s + 2·11-s − 12-s + 2·14-s + 2·15-s + 16-s − 4·17-s + 18-s + 19-s − 2·20-s − 2·21-s + 2·22-s + 23-s − 24-s − 25-s − 27-s + 2·28-s + 3·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.603·11-s − 0.288·12-s + 0.534·14-s + 0.516·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s + 0.229·19-s − 0.447·20-s − 0.436·21-s + 0.426·22-s + 0.208·23-s − 0.204·24-s − 1/5·25-s − 0.192·27-s + 0.377·28-s + 0.557·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 255162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 255162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(255162\)    =    \(2 \cdot 3 \cdot 23 \cdot 43^{2}\)
Sign: $-1$
Analytic conductor: \(2037.47\)
Root analytic conductor: \(45.1384\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 255162,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
23 \( 1 - T \)
43 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - T + p T^{2} \) 1.41.ab
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00297695387253, −12.49748206858760, −12.05102524224084, −11.69123617522923, −11.38383116117174, −10.87523069675345, −10.65880096704522, −9.865930064605720, −9.404283794368821, −8.754339555053115, −8.353539703165871, −7.743584327229859, −7.362390829077324, −6.939198475919724, −6.268566753125392, −6.014414550316739, −5.255513681090712, −4.843060926907544, −4.361258633292731, −3.965733999692807, −3.530363470622491, −2.666554857480837, −2.203343414621099, −1.401152398199126, −0.8659579088702893, 0, 0.8659579088702893, 1.401152398199126, 2.203343414621099, 2.666554857480837, 3.530363470622491, 3.965733999692807, 4.361258633292731, 4.843060926907544, 5.255513681090712, 6.014414550316739, 6.268566753125392, 6.939198475919724, 7.362390829077324, 7.743584327229859, 8.353539703165871, 8.754339555053115, 9.404283794368821, 9.865930064605720, 10.65880096704522, 10.87523069675345, 11.38383116117174, 11.69123617522923, 12.05102524224084, 12.49748206858760, 13.00297695387253

Graph of the $Z$-function along the critical line