Properties

Label 2-25410-1.1-c1-0-30
Degree $2$
Conductor $25410$
Sign $1$
Analytic cond. $202.899$
Root an. cond. $14.2442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 7-s + 8-s + 9-s − 10-s + 12-s + 4·13-s − 14-s − 15-s + 16-s + 6·17-s + 18-s + 4·19-s − 20-s − 21-s − 6·23-s + 24-s + 25-s + 4·26-s + 27-s − 28-s + 9·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s + 1.10·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.218·21-s − 1.25·23-s + 0.204·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s − 0.188·28-s + 1.67·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(202.899\)
Root analytic conductor: \(14.2442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.264187806\)
\(L(\frac12)\) \(\approx\) \(5.264187806\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.60567055218726, −14.63375700455209, −14.12648890058063, −13.87891720242019, −13.38657782399639, −12.60037871263635, −12.06424158942256, −11.94361699115805, −11.02444605301354, −10.49297342325992, −9.863680823171526, −9.470794898176633, −8.488256050214466, −8.113508705625934, −7.657086139693898, −6.896537507192516, −6.231648613458955, −5.825789486862003, −4.962075146331701, −4.323597869153568, −3.663822800209805, −3.162534777690422, −2.647285052866156, −1.503358936840389, −0.8464084496096321, 0.8464084496096321, 1.503358936840389, 2.647285052866156, 3.162534777690422, 3.663822800209805, 4.323597869153568, 4.962075146331701, 5.825789486862003, 6.231648613458955, 6.896537507192516, 7.657086139693898, 8.113508705625934, 8.488256050214466, 9.470794898176633, 9.863680823171526, 10.49297342325992, 11.02444605301354, 11.94361699115805, 12.06424158942256, 12.60037871263635, 13.38657782399639, 13.87891720242019, 14.12648890058063, 14.63375700455209, 15.60567055218726

Graph of the $Z$-function along the critical line