Properties

Label 2-252e2-1.1-c1-0-40
Degree $2$
Conductor $63504$
Sign $-1$
Analytic cond. $507.081$
Root an. cond. $22.5184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 3·11-s + 13-s − 3·17-s − 7·19-s + 9·23-s + 4·25-s + 3·29-s + 8·31-s − 37-s − 3·41-s + 43-s + 3·53-s − 9·55-s − 2·61-s − 3·65-s + 4·67-s − 12·71-s − 11·73-s + 16·79-s − 9·83-s + 9·85-s − 3·89-s + 21·95-s + 97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.34·5-s + 0.904·11-s + 0.277·13-s − 0.727·17-s − 1.60·19-s + 1.87·23-s + 4/5·25-s + 0.557·29-s + 1.43·31-s − 0.164·37-s − 0.468·41-s + 0.152·43-s + 0.412·53-s − 1.21·55-s − 0.256·61-s − 0.372·65-s + 0.488·67-s − 1.42·71-s − 1.28·73-s + 1.80·79-s − 0.987·83-s + 0.976·85-s − 0.317·89-s + 2.15·95-s + 0.101·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(507.081\)
Root analytic conductor: \(22.5184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 63504,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.67469094802503, −14.05322516919429, −13.30099494220624, −13.11365372909369, −12.29535966316467, −12.01059460161414, −11.50814445505049, −10.93355590313593, −10.69108294192180, −9.979339180594490, −9.153412389878118, −8.808173934885900, −8.357206621500006, −7.894610839760274, −7.097746801870335, −6.695062108046194, −6.383813351686505, −5.473538149195049, −4.669423304225412, −4.317045302211745, −3.889035420323941, −3.096528942937501, −2.593400386942858, −1.577081974945528, −0.8486786059420609, 0, 0.8486786059420609, 1.577081974945528, 2.593400386942858, 3.096528942937501, 3.889035420323941, 4.317045302211745, 4.669423304225412, 5.473538149195049, 6.383813351686505, 6.695062108046194, 7.097746801870335, 7.894610839760274, 8.357206621500006, 8.808173934885900, 9.153412389878118, 9.979339180594490, 10.69108294192180, 10.93355590313593, 11.50814445505049, 12.01059460161414, 12.29535966316467, 13.11365372909369, 13.30099494220624, 14.05322516919429, 14.67469094802503

Graph of the $Z$-function along the critical line