Properties

Label 2-252e2-1.1-c1-0-21
Degree $2$
Conductor $63504$
Sign $1$
Analytic cond. $507.081$
Root an. cond. $22.5184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·11-s + 6·13-s − 2·17-s + 4·19-s − 23-s + 11·25-s − 4·29-s + 9·31-s + 8·37-s − 3·41-s − 2·43-s − 9·47-s + 12·53-s − 8·55-s + 4·59-s + 6·61-s − 24·65-s + 14·67-s − 71-s + 7·73-s + 3·79-s + 14·83-s + 8·85-s + 3·89-s − 16·95-s + 10·97-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.603·11-s + 1.66·13-s − 0.485·17-s + 0.917·19-s − 0.208·23-s + 11/5·25-s − 0.742·29-s + 1.61·31-s + 1.31·37-s − 0.468·41-s − 0.304·43-s − 1.31·47-s + 1.64·53-s − 1.07·55-s + 0.520·59-s + 0.768·61-s − 2.97·65-s + 1.71·67-s − 0.118·71-s + 0.819·73-s + 0.337·79-s + 1.53·83-s + 0.867·85-s + 0.317·89-s − 1.64·95-s + 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(507.081\)
Root analytic conductor: \(22.5184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 63504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.276534136\)
\(L(\frac12)\) \(\approx\) \(2.276534136\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34495344597019, −13.63449693189390, −13.27697809275441, −12.75119238275919, −11.96079433221815, −11.71027798825833, −11.33075414506393, −10.95234164603689, −10.25101473379777, −9.608696613006385, −8.976868674484977, −8.450511197596438, −8.081605609582599, −7.676949299959417, −6.820159824948405, −6.616831705845542, −5.890626236836556, −5.103690737238562, −4.503041810784970, −3.857825559039191, −3.629274080379460, −3.009557795894046, −2.054058336687594, −0.9878874220826673, −0.6676682381497971, 0.6676682381497971, 0.9878874220826673, 2.054058336687594, 3.009557795894046, 3.629274080379460, 3.857825559039191, 4.503041810784970, 5.103690737238562, 5.890626236836556, 6.616831705845542, 6.820159824948405, 7.676949299959417, 8.081605609582599, 8.450511197596438, 8.976868674484977, 9.608696613006385, 10.25101473379777, 10.95234164603689, 11.33075414506393, 11.71027798825833, 11.96079433221815, 12.75119238275919, 13.27697809275441, 13.63449693189390, 14.34495344597019

Graph of the $Z$-function along the critical line