Properties

Label 2-249900-1.1-c1-0-121
Degree $2$
Conductor $249900$
Sign $-1$
Analytic cond. $1995.46$
Root an. cond. $44.6705$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 3·11-s + 17-s + 2·19-s + 23-s + 27-s + 6·29-s + 5·31-s + 3·33-s − 4·37-s + 8·41-s − 7·47-s + 51-s + 6·53-s + 2·57-s + 5·59-s − 13·61-s − 5·67-s + 69-s − 5·71-s + 3·73-s − 8·79-s + 81-s − 83-s + 6·87-s + 10·89-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.904·11-s + 0.242·17-s + 0.458·19-s + 0.208·23-s + 0.192·27-s + 1.11·29-s + 0.898·31-s + 0.522·33-s − 0.657·37-s + 1.24·41-s − 1.02·47-s + 0.140·51-s + 0.824·53-s + 0.264·57-s + 0.650·59-s − 1.66·61-s − 0.610·67-s + 0.120·69-s − 0.593·71-s + 0.351·73-s − 0.900·79-s + 1/9·81-s − 0.109·83-s + 0.643·87-s + 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(249900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1995.46\)
Root analytic conductor: \(44.6705\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 249900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18195430864636, −12.57862677761912, −12.08906642547445, −11.85209071220834, −11.28935626906398, −10.70190891502391, −10.24292235473470, −9.807944631005562, −9.329402469713204, −8.856623940141281, −8.526015249632231, −7.883277307032640, −7.534700887579731, −6.944062243972022, −6.435125504193824, −6.111796211850324, −5.320454968874463, −4.890692379406393, −4.207267253511853, −3.922237364138211, −3.134989483022320, −2.825362834164725, −2.162946219098628, −1.282551660648206, −1.102729054067335, 0, 1.102729054067335, 1.282551660648206, 2.162946219098628, 2.825362834164725, 3.134989483022320, 3.922237364138211, 4.207267253511853, 4.890692379406393, 5.320454968874463, 6.111796211850324, 6.435125504193824, 6.944062243972022, 7.534700887579731, 7.883277307032640, 8.526015249632231, 8.856623940141281, 9.329402469713204, 9.807944631005562, 10.24292235473470, 10.70190891502391, 11.28935626906398, 11.85209071220834, 12.08906642547445, 12.57862677761912, 13.18195430864636

Graph of the $Z$-function along the critical line