Properties

Label 2-248430-1.1-c1-0-125
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 6·11-s + 12-s + 15-s + 16-s + 6·17-s + 18-s − 6·19-s + 20-s + 6·22-s + 2·23-s + 24-s + 25-s + 27-s − 6·29-s + 30-s − 4·31-s + 32-s + 6·33-s + 6·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.80·11-s + 0.288·12-s + 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 1.37·19-s + 0.223·20-s + 1.27·22-s + 0.417·23-s + 0.204·24-s + 1/5·25-s + 0.192·27-s − 1.11·29-s + 0.182·30-s − 0.718·31-s + 0.176·32-s + 1.04·33-s + 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.702776405\)
\(L(\frac12)\) \(\approx\) \(8.702776405\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88710419894398, −12.62836410585731, −11.91896597557931, −11.56634497168753, −11.17879475993785, −10.52281008706011, −10.06045527535256, −9.511600889162665, −9.251310052045489, −8.677973940744980, −8.147215921814927, −7.671272652773353, −7.034987252273015, −6.635593916978400, −6.224415709382468, −5.682614237823264, −5.182055458742461, −4.511103540421114, −4.016494866402556, −3.570081455425972, −3.200326375602202, −2.377489916799843, −1.852094979225714, −1.394635804111774, −0.6805949847320348, 0.6805949847320348, 1.394635804111774, 1.852094979225714, 2.377489916799843, 3.200326375602202, 3.570081455425972, 4.016494866402556, 4.511103540421114, 5.182055458742461, 5.682614237823264, 6.224415709382468, 6.635593916978400, 7.034987252273015, 7.671272652773353, 8.147215921814927, 8.677973940744980, 9.251310052045489, 9.511600889162665, 10.06045527535256, 10.52281008706011, 11.17879475993785, 11.56634497168753, 11.91896597557931, 12.62836410585731, 12.88710419894398

Graph of the $Z$-function along the critical line