Properties

Label 2-248430-1.1-c1-0-119
Degree $2$
Conductor $248430$
Sign $-1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s + 9-s − 10-s − 2·11-s − 12-s + 15-s + 16-s − 17-s + 18-s + 2·19-s − 20-s − 2·22-s − 7·23-s − 24-s + 25-s − 27-s − 2·29-s + 30-s − 5·31-s + 32-s + 2·33-s − 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s − 0.288·12-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.458·19-s − 0.223·20-s − 0.426·22-s − 1.45·23-s − 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.182·30-s − 0.898·31-s + 0.176·32-s + 0.348·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09396976425024, −12.55267956505026, −12.07628741584774, −11.87062087251672, −11.37919720354278, −10.77780648492470, −10.46747265769502, −10.09767883655643, −9.356787457555732, −8.965920157842893, −8.209308420154559, −7.822257467691232, −7.391386378302317, −6.869489547132608, −6.386132929527932, −5.810085769482612, −5.396196112598006, −4.981582131989532, −4.377619787789178, −3.881539731919816, −3.420783906460368, −2.827757803132359, −2.007340353110510, −1.694370294607480, −0.6668444498422661, 0, 0.6668444498422661, 1.694370294607480, 2.007340353110510, 2.827757803132359, 3.420783906460368, 3.881539731919816, 4.377619787789178, 4.981582131989532, 5.396196112598006, 5.810085769482612, 6.386132929527932, 6.869489547132608, 7.391386378302317, 7.822257467691232, 8.209308420154559, 8.965920157842893, 9.356787457555732, 10.09767883655643, 10.46747265769502, 10.77780648492470, 11.37919720354278, 11.87062087251672, 12.07628741584774, 12.55267956505026, 13.09396976425024

Graph of the $Z$-function along the critical line