Properties

Label 2-248430-1.1-c1-0-114
Degree $2$
Conductor $248430$
Sign $-1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 9-s + 10-s + 4·11-s − 12-s + 15-s + 16-s − 18-s − 5·19-s − 20-s − 4·22-s + 23-s + 24-s + 25-s − 27-s − 4·29-s − 30-s + 6·31-s − 32-s − 4·33-s + 36-s − 7·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.258·15-s + 1/4·16-s − 0.235·18-s − 1.14·19-s − 0.223·20-s − 0.852·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.742·29-s − 0.182·30-s + 1.07·31-s − 0.176·32-s − 0.696·33-s + 1/6·36-s − 1.15·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17315173566702, −12.36535629880999, −11.95365081868061, −11.79345018745775, −11.20547091708782, −10.81702868299395, −10.29556887670343, −9.874988771419232, −9.451475584710963, −8.694594463034696, −8.527447243024864, −8.127289497709744, −7.231925528078646, −6.967880747260061, −6.599647552050914, −6.118784760204529, −5.417883679182886, −5.035949666172143, −4.147212871541098, −3.999049638573440, −3.304989633063054, −2.602236736759905, −1.844064950835170, −1.417173372763242, −0.6628028743889272, 0, 0.6628028743889272, 1.417173372763242, 1.844064950835170, 2.602236736759905, 3.304989633063054, 3.999049638573440, 4.147212871541098, 5.035949666172143, 5.417883679182886, 6.118784760204529, 6.599647552050914, 6.967880747260061, 7.231925528078646, 8.127289497709744, 8.527447243024864, 8.694594463034696, 9.451475584710963, 9.874988771419232, 10.29556887670343, 10.81702868299395, 11.20547091708782, 11.79345018745775, 11.95365081868061, 12.36535629880999, 13.17315173566702

Graph of the $Z$-function along the critical line