Properties

Label 2-248430-1.1-c1-0-110
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 8-s + 9-s + 10-s + 11-s − 12-s − 15-s + 16-s + 18-s + 5·19-s + 20-s + 22-s + 4·23-s − 24-s + 25-s − 27-s + 8·29-s − 30-s − 31-s + 32-s − 33-s + 36-s + 2·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.258·15-s + 1/4·16-s + 0.235·18-s + 1.14·19-s + 0.223·20-s + 0.213·22-s + 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.192·27-s + 1.48·29-s − 0.182·30-s − 0.179·31-s + 0.176·32-s − 0.174·33-s + 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.472067409\)
\(L(\frac12)\) \(\approx\) \(5.472067409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.90568268052903, −12.22565523472952, −12.06859880339733, −11.56743913288588, −11.13953915817474, −10.57661670473755, −10.13361257192020, −9.825844408213694, −9.105086451684425, −8.763843796847681, −8.049154784920702, −7.573330758469077, −6.918979368545550, −6.642393042135581, −6.229988421423540, −5.489446379947679, −5.186969940762125, −4.853754231505463, −4.137745743859072, −3.592125185896440, −3.060755196236718, −2.476408284005009, −1.816217464699034, −1.106562087340531, −0.6560527363204549, 0.6560527363204549, 1.106562087340531, 1.816217464699034, 2.476408284005009, 3.060755196236718, 3.592125185896440, 4.137745743859072, 4.853754231505463, 5.186969940762125, 5.489446379947679, 6.229988421423540, 6.642393042135581, 6.918979368545550, 7.573330758469077, 8.049154784920702, 8.763843796847681, 9.105086451684425, 9.825844408213694, 10.13361257192020, 10.57661670473755, 11.13953915817474, 11.56743913288588, 12.06859880339733, 12.22565523472952, 12.90568268052903

Graph of the $Z$-function along the critical line