| L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−2.72 − 1.57i)5-s + 7-s − 0.999·8-s + (−2.72 + 1.57i)10-s − 1.09i·11-s + (3 − 1.73i)13-s + (0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (−2.05 − 1.18i)17-s + (−0.5 − 4.33i)19-s + 3.14i·20-s + (−0.949 − 0.548i)22-s + (0.550 − 0.317i)23-s + ⋯ |
| L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−1.21 − 0.703i)5-s + 0.377·7-s − 0.353·8-s + (−0.861 + 0.497i)10-s − 0.330i·11-s + (0.832 − 0.480i)13-s + (0.133 − 0.231i)14-s + (−0.125 + 0.216i)16-s + (−0.497 − 0.287i)17-s + (−0.114 − 0.993i)19-s + 0.703i·20-s + (−0.202 − 0.116i)22-s + (0.114 − 0.0662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.736 - 0.676i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.736 - 0.676i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7355194043\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7355194043\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 + (0.5 + 4.33i)T \) |
| good | 5 | \( 1 + (2.72 + 1.57i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 1.09iT - 11T^{2} \) |
| 13 | \( 1 + (-3 + 1.73i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.05 + 1.18i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.550 + 0.317i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.67 + 6.36i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 - 2.51iT - 37T^{2} \) |
| 41 | \( 1 + (3.94 - 6.84i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.22 + 5.58i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.12 - 3.53i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.22 + 2.12i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.550 + 0.953i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.55 + 2.68i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (8.02 - 4.63i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.89 - 10.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6 + 3.46i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 5.65iT - 83T^{2} \) |
| 89 | \( 1 + (0.949 + 1.64i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.34 + 4.24i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.507055974146734267468072185545, −7.955508337207359862616812074491, −6.99410556258477418984250159264, −5.98998058254459746421769391024, −5.02203731132555292827490234423, −4.40935534947337102013351788652, −3.65467749295113135804823049637, −2.72749133310527732589422660523, −1.31723942714824743017401401724, −0.23348430358978960315335738370,
1.75368025902883813475066299922, 3.20245457035456001731236666262, 3.89305218970925027697875112736, 4.51690959450779595826340786113, 5.62481830268956273229446293381, 6.44275900234660704288863668565, 7.21202686800626954028352377989, 7.72921206285010031980937968840, 8.484893052527445522230186833153, 9.136632540966265284243489163265