Properties

Label 2394.2.cq.b.1205.1
Level $2394$
Weight $2$
Character 2394.1205
Analytic conductor $19.116$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2394,2,Mod(449,2394)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2394.449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2394, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.cq (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1161862439\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1205.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2394.1205
Dual form 2394.2.cq.b.449.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-2.72474 - 1.57313i) q^{5} +1.00000 q^{7} -1.00000 q^{8} +(-2.72474 + 1.57313i) q^{10} -1.09638i q^{11} +(3.00000 - 1.73205i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-2.05051 - 1.18386i) q^{17} +(-0.500000 - 4.33013i) q^{19} +3.14626i q^{20} +(-0.949490 - 0.548188i) q^{22} +(0.550510 - 0.317837i) q^{23} +(2.44949 + 4.24264i) q^{25} -3.46410i q^{26} +(-0.500000 - 0.866025i) q^{28} +(-3.67423 - 6.36396i) q^{29} +3.46410i q^{31} +(0.500000 + 0.866025i) q^{32} +(-2.05051 + 1.18386i) q^{34} +(-2.72474 - 1.57313i) q^{35} +2.51059i q^{37} +(-4.00000 - 1.73205i) q^{38} +(2.72474 + 1.57313i) q^{40} +(-3.94949 + 6.84072i) q^{41} +(3.22474 - 5.58542i) q^{43} +(-0.949490 + 0.548188i) q^{44} -0.635674i q^{46} +(-6.12372 + 3.53553i) q^{47} +1.00000 q^{49} +4.89898 q^{50} +(-3.00000 - 1.73205i) q^{52} +(-1.22474 - 2.12132i) q^{53} +(-1.72474 + 2.98735i) q^{55} -1.00000 q^{56} -7.34847 q^{58} +(0.550510 - 0.953512i) q^{59} +(-1.55051 - 2.68556i) q^{61} +(3.00000 + 1.73205i) q^{62} +1.00000 q^{64} -10.8990 q^{65} +(-8.02270 + 4.63191i) q^{67} +2.36773i q^{68} +(-2.72474 + 1.57313i) q^{70} +(-5.89898 + 10.2173i) q^{73} +(2.17423 + 1.25529i) q^{74} +(-3.50000 + 2.59808i) q^{76} -1.09638i q^{77} +(-6.00000 - 3.46410i) q^{79} +(2.72474 - 1.57313i) q^{80} +(3.94949 + 6.84072i) q^{82} +5.65685i q^{83} +(3.72474 + 6.45145i) q^{85} +(-3.22474 - 5.58542i) q^{86} +1.09638i q^{88} +(-0.949490 - 1.64456i) q^{89} +(3.00000 - 1.73205i) q^{91} +(-0.550510 - 0.317837i) q^{92} +7.07107i q^{94} +(-5.44949 + 12.5851i) q^{95} +(-7.34847 - 4.24264i) q^{97} +(0.500000 - 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 6 q^{5} + 4 q^{7} - 4 q^{8} - 6 q^{10} + 12 q^{13} + 2 q^{14} - 2 q^{16} - 18 q^{17} - 2 q^{19} + 6 q^{22} + 12 q^{23} - 2 q^{28} + 2 q^{32} - 18 q^{34} - 6 q^{35} - 16 q^{38}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2394\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(1711\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.72474 1.57313i −1.21854 0.703526i −0.253937 0.967221i \(-0.581726\pi\)
−0.964606 + 0.263695i \(0.915059\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.72474 + 1.57313i −0.861640 + 0.497468i
\(11\) 1.09638i 0.330570i −0.986246 0.165285i \(-0.947146\pi\)
0.986246 0.165285i \(-0.0528544\pi\)
\(12\) 0 0
\(13\) 3.00000 1.73205i 0.832050 0.480384i −0.0225039 0.999747i \(-0.507164\pi\)
0.854554 + 0.519362i \(0.173830\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.05051 1.18386i −0.497322 0.287129i 0.230285 0.973123i \(-0.426034\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) −0.500000 4.33013i −0.114708 0.993399i
\(20\) 3.14626i 0.703526i
\(21\) 0 0
\(22\) −0.949490 0.548188i −0.202432 0.116874i
\(23\) 0.550510 0.317837i 0.114789 0.0662736i −0.441506 0.897258i \(-0.645556\pi\)
0.556295 + 0.830985i \(0.312222\pi\)
\(24\) 0 0
\(25\) 2.44949 + 4.24264i 0.489898 + 0.848528i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) −0.500000 0.866025i −0.0944911 0.163663i
\(29\) −3.67423 6.36396i −0.682288 1.18176i −0.974281 0.225337i \(-0.927652\pi\)
0.291993 0.956421i \(-0.405682\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −2.05051 + 1.18386i −0.351660 + 0.203031i
\(35\) −2.72474 1.57313i −0.460566 0.265908i
\(36\) 0 0
\(37\) 2.51059i 0.412738i 0.978474 + 0.206369i \(0.0661648\pi\)
−0.978474 + 0.206369i \(0.933835\pi\)
\(38\) −4.00000 1.73205i −0.648886 0.280976i
\(39\) 0 0
\(40\) 2.72474 + 1.57313i 0.430820 + 0.248734i
\(41\) −3.94949 + 6.84072i −0.616807 + 1.06834i 0.373258 + 0.927728i \(0.378241\pi\)
−0.990065 + 0.140613i \(0.955093\pi\)
\(42\) 0 0
\(43\) 3.22474 5.58542i 0.491769 0.851769i −0.508186 0.861247i \(-0.669684\pi\)
0.999955 + 0.00947842i \(0.00301712\pi\)
\(44\) −0.949490 + 0.548188i −0.143141 + 0.0826425i
\(45\) 0 0
\(46\) 0.635674i 0.0937251i
\(47\) −6.12372 + 3.53553i −0.893237 + 0.515711i −0.875000 0.484123i \(-0.839139\pi\)
−0.0182371 + 0.999834i \(0.505805\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 4.89898 0.692820
\(51\) 0 0
\(52\) −3.00000 1.73205i −0.416025 0.240192i
\(53\) −1.22474 2.12132i −0.168232 0.291386i 0.769567 0.638567i \(-0.220472\pi\)
−0.937798 + 0.347181i \(0.887139\pi\)
\(54\) 0 0
\(55\) −1.72474 + 2.98735i −0.232565 + 0.402814i
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) −7.34847 −0.964901
\(59\) 0.550510 0.953512i 0.0716703 0.124137i −0.827963 0.560783i \(-0.810500\pi\)
0.899633 + 0.436646i \(0.143834\pi\)
\(60\) 0 0
\(61\) −1.55051 2.68556i −0.198522 0.343851i 0.749527 0.661974i \(-0.230281\pi\)
−0.948050 + 0.318123i \(0.896948\pi\)
\(62\) 3.00000 + 1.73205i 0.381000 + 0.219971i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −10.8990 −1.35185
\(66\) 0 0
\(67\) −8.02270 + 4.63191i −0.980129 + 0.565878i −0.902309 0.431090i \(-0.858129\pi\)
−0.0778201 + 0.996967i \(0.524796\pi\)
\(68\) 2.36773i 0.287129i
\(69\) 0 0
\(70\) −2.72474 + 1.57313i −0.325669 + 0.188025i
\(71\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(72\) 0 0
\(73\) −5.89898 + 10.2173i −0.690423 + 1.19585i 0.281276 + 0.959627i \(0.409242\pi\)
−0.971699 + 0.236221i \(0.924091\pi\)
\(74\) 2.17423 + 1.25529i 0.252750 + 0.145925i
\(75\) 0 0
\(76\) −3.50000 + 2.59808i −0.401478 + 0.298020i
\(77\) 1.09638i 0.124944i
\(78\) 0 0
\(79\) −6.00000 3.46410i −0.675053 0.389742i 0.122936 0.992415i \(-0.460769\pi\)
−0.797988 + 0.602673i \(0.794102\pi\)
\(80\) 2.72474 1.57313i 0.304636 0.175882i
\(81\) 0 0
\(82\) 3.94949 + 6.84072i 0.436148 + 0.755431i
\(83\) 5.65685i 0.620920i 0.950586 + 0.310460i \(0.100483\pi\)
−0.950586 + 0.310460i \(0.899517\pi\)
\(84\) 0 0
\(85\) 3.72474 + 6.45145i 0.404005 + 0.699758i
\(86\) −3.22474 5.58542i −0.347733 0.602292i
\(87\) 0 0
\(88\) 1.09638i 0.116874i
\(89\) −0.949490 1.64456i −0.100646 0.174323i 0.811305 0.584623i \(-0.198758\pi\)
−0.911951 + 0.410299i \(0.865424\pi\)
\(90\) 0 0
\(91\) 3.00000 1.73205i 0.314485 0.181568i
\(92\) −0.550510 0.317837i −0.0573947 0.0331368i
\(93\) 0 0
\(94\) 7.07107i 0.729325i
\(95\) −5.44949 + 12.5851i −0.559106 + 1.29120i
\(96\) 0 0
\(97\) −7.34847 4.24264i −0.746124 0.430775i 0.0781677 0.996940i \(-0.475093\pi\)
−0.824292 + 0.566165i \(0.808426\pi\)
\(98\) 0.500000 0.866025i 0.0505076 0.0874818i
\(99\) 0 0
\(100\) 2.44949 4.24264i 0.244949 0.424264i
\(101\) −9.27526 + 5.35507i −0.922922 + 0.532849i −0.884566 0.466415i \(-0.845545\pi\)
−0.0383562 + 0.999264i \(0.512212\pi\)
\(102\) 0 0
\(103\) 0.953512i 0.0939523i 0.998896 + 0.0469762i \(0.0149585\pi\)
−0.998896 + 0.0469762i \(0.985042\pi\)
\(104\) −3.00000 + 1.73205i −0.294174 + 0.169842i
\(105\) 0 0
\(106\) −2.44949 −0.237915
\(107\) −1.10102 −0.106440 −0.0532198 0.998583i \(-0.516948\pi\)
−0.0532198 + 0.998583i \(0.516948\pi\)
\(108\) 0 0
\(109\) 12.5227 + 7.22999i 1.19946 + 0.692507i 0.960434 0.278507i \(-0.0898395\pi\)
0.239023 + 0.971014i \(0.423173\pi\)
\(110\) 1.72474 + 2.98735i 0.164448 + 0.284832i
\(111\) 0 0
\(112\) −0.500000 + 0.866025i −0.0472456 + 0.0818317i
\(113\) 4.89898 0.460857 0.230429 0.973089i \(-0.425987\pi\)
0.230429 + 0.973089i \(0.425987\pi\)
\(114\) 0 0
\(115\) −2.00000 −0.186501
\(116\) −3.67423 + 6.36396i −0.341144 + 0.590879i
\(117\) 0 0
\(118\) −0.550510 0.953512i −0.0506786 0.0877779i
\(119\) −2.05051 1.18386i −0.187970 0.108525i
\(120\) 0 0
\(121\) 9.79796 0.890724
\(122\) −3.10102 −0.280753
\(123\) 0 0
\(124\) 3.00000 1.73205i 0.269408 0.155543i
\(125\) 0.317837i 0.0284282i
\(126\) 0 0
\(127\) 0.674235 0.389270i 0.0598286 0.0345421i −0.469787 0.882780i \(-0.655669\pi\)
0.529616 + 0.848238i \(0.322336\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −5.44949 + 9.43879i −0.477952 + 0.827837i
\(131\) −10.2247 5.90326i −0.893340 0.515770i −0.0183066 0.999832i \(-0.505827\pi\)
−0.875034 + 0.484062i \(0.839161\pi\)
\(132\) 0 0
\(133\) −0.500000 4.33013i −0.0433555 0.375470i
\(134\) 9.26382i 0.800272i
\(135\) 0 0
\(136\) 2.05051 + 1.18386i 0.175830 + 0.101515i
\(137\) −6.12372 + 3.53553i −0.523185 + 0.302061i −0.738237 0.674542i \(-0.764341\pi\)
0.215052 + 0.976603i \(0.431008\pi\)
\(138\) 0 0
\(139\) −10.9495 18.9651i −0.928724 1.60860i −0.785460 0.618912i \(-0.787574\pi\)
−0.143263 0.989685i \(-0.545760\pi\)
\(140\) 3.14626i 0.265908i
\(141\) 0 0
\(142\) 0 0
\(143\) −1.89898 3.28913i −0.158801 0.275051i
\(144\) 0 0
\(145\) 23.1202i 1.92003i
\(146\) 5.89898 + 10.2173i 0.488203 + 0.845592i
\(147\) 0 0
\(148\) 2.17423 1.25529i 0.178721 0.103185i
\(149\) −4.22474 2.43916i −0.346105 0.199824i 0.316864 0.948471i \(-0.397370\pi\)
−0.662968 + 0.748648i \(0.730704\pi\)
\(150\) 0 0
\(151\) 15.4135i 1.25433i 0.778886 + 0.627166i \(0.215785\pi\)
−0.778886 + 0.627166i \(0.784215\pi\)
\(152\) 0.500000 + 4.33013i 0.0405554 + 0.351220i
\(153\) 0 0
\(154\) −0.949490 0.548188i −0.0765121 0.0441743i
\(155\) 5.44949 9.43879i 0.437714 0.758142i
\(156\) 0 0
\(157\) −8.34847 + 14.4600i −0.666280 + 1.15403i 0.312656 + 0.949866i \(0.398781\pi\)
−0.978936 + 0.204165i \(0.934552\pi\)
\(158\) −6.00000 + 3.46410i −0.477334 + 0.275589i
\(159\) 0 0
\(160\) 3.14626i 0.248734i
\(161\) 0.550510 0.317837i 0.0433863 0.0250491i
\(162\) 0 0
\(163\) 18.8990 1.48028 0.740141 0.672452i \(-0.234759\pi\)
0.740141 + 0.672452i \(0.234759\pi\)
\(164\) 7.89898 0.616807
\(165\) 0 0
\(166\) 4.89898 + 2.82843i 0.380235 + 0.219529i
\(167\) −3.00000 5.19615i −0.232147 0.402090i 0.726293 0.687386i \(-0.241242\pi\)
−0.958440 + 0.285295i \(0.907908\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 7.44949 0.571350
\(171\) 0 0
\(172\) −6.44949 −0.491769
\(173\) 7.34847 12.7279i 0.558694 0.967686i −0.438912 0.898530i \(-0.644636\pi\)
0.997606 0.0691560i \(-0.0220306\pi\)
\(174\) 0 0
\(175\) 2.44949 + 4.24264i 0.185164 + 0.320713i
\(176\) 0.949490 + 0.548188i 0.0715705 + 0.0413212i
\(177\) 0 0
\(178\) −1.89898 −0.142335
\(179\) 18.7980 1.40503 0.702513 0.711671i \(-0.252061\pi\)
0.702513 + 0.711671i \(0.252061\pi\)
\(180\) 0 0
\(181\) −7.34847 + 4.24264i −0.546207 + 0.315353i −0.747591 0.664159i \(-0.768790\pi\)
0.201384 + 0.979512i \(0.435456\pi\)
\(182\) 3.46410i 0.256776i
\(183\) 0 0
\(184\) −0.550510 + 0.317837i −0.0405842 + 0.0234313i
\(185\) 3.94949 6.84072i 0.290372 0.502940i
\(186\) 0 0
\(187\) −1.29796 + 2.24813i −0.0949162 + 0.164400i
\(188\) 6.12372 + 3.53553i 0.446619 + 0.257855i
\(189\) 0 0
\(190\) 8.17423 + 11.0119i 0.593021 + 0.798889i
\(191\) 7.84961i 0.567978i −0.958828 0.283989i \(-0.908342\pi\)
0.958828 0.283989i \(-0.0916579\pi\)
\(192\) 0 0
\(193\) −8.84847 5.10867i −0.636927 0.367730i 0.146503 0.989210i \(-0.453198\pi\)
−0.783430 + 0.621480i \(0.786532\pi\)
\(194\) −7.34847 + 4.24264i −0.527589 + 0.304604i
\(195\) 0 0
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) 19.7990i 1.41062i −0.708899 0.705310i \(-0.750808\pi\)
0.708899 0.705310i \(-0.249192\pi\)
\(198\) 0 0
\(199\) −0.449490 0.778539i −0.0318635 0.0551892i 0.849654 0.527341i \(-0.176811\pi\)
−0.881517 + 0.472152i \(0.843478\pi\)
\(200\) −2.44949 4.24264i −0.173205 0.300000i
\(201\) 0 0
\(202\) 10.7101i 0.753563i
\(203\) −3.67423 6.36396i −0.257881 0.446663i
\(204\) 0 0
\(205\) 21.5227 12.4261i 1.50321 0.867879i
\(206\) 0.825765 + 0.476756i 0.0575338 + 0.0332172i
\(207\) 0 0
\(208\) 3.46410i 0.240192i
\(209\) −4.74745 + 0.548188i −0.328388 + 0.0379190i
\(210\) 0 0
\(211\) 1.34847 + 0.778539i 0.0928325 + 0.0535968i 0.545698 0.837982i \(-0.316265\pi\)
−0.452865 + 0.891579i \(0.649598\pi\)
\(212\) −1.22474 + 2.12132i −0.0841158 + 0.145693i
\(213\) 0 0
\(214\) −0.550510 + 0.953512i −0.0376321 + 0.0651807i
\(215\) −17.5732 + 10.1459i −1.19848 + 0.691945i
\(216\) 0 0
\(217\) 3.46410i 0.235159i
\(218\) 12.5227 7.22999i 0.848145 0.489676i
\(219\) 0 0
\(220\) 3.44949 0.232565
\(221\) −8.20204 −0.551729
\(222\) 0 0
\(223\) −16.8712 9.74058i −1.12978 0.652277i −0.185898 0.982569i \(-0.559520\pi\)
−0.943879 + 0.330292i \(0.892853\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 2.44949 4.24264i 0.162938 0.282216i
\(227\) −8.44949 −0.560812 −0.280406 0.959881i \(-0.590469\pi\)
−0.280406 + 0.959881i \(0.590469\pi\)
\(228\) 0 0
\(229\) −11.3485 −0.749928 −0.374964 0.927039i \(-0.622345\pi\)
−0.374964 + 0.927039i \(0.622345\pi\)
\(230\) −1.00000 + 1.73205i −0.0659380 + 0.114208i
\(231\) 0 0
\(232\) 3.67423 + 6.36396i 0.241225 + 0.417815i
\(233\) 13.1010 + 7.56388i 0.858276 + 0.495526i 0.863435 0.504461i \(-0.168309\pi\)
−0.00515833 + 0.999987i \(0.501642\pi\)
\(234\) 0 0
\(235\) 22.2474 1.45126
\(236\) −1.10102 −0.0716703
\(237\) 0 0
\(238\) −2.05051 + 1.18386i −0.132915 + 0.0767384i
\(239\) 12.2672i 0.793501i −0.917927 0.396750i \(-0.870138\pi\)
0.917927 0.396750i \(-0.129862\pi\)
\(240\) 0 0
\(241\) 12.0000 6.92820i 0.772988 0.446285i −0.0609515 0.998141i \(-0.519414\pi\)
0.833939 + 0.551856i \(0.186080\pi\)
\(242\) 4.89898 8.48528i 0.314918 0.545455i
\(243\) 0 0
\(244\) −1.55051 + 2.68556i −0.0992612 + 0.171926i
\(245\) −2.72474 1.57313i −0.174078 0.100504i
\(246\) 0 0
\(247\) −9.00000 12.1244i −0.572656 0.771454i
\(248\) 3.46410i 0.219971i
\(249\) 0 0
\(250\) 0.275255 + 0.158919i 0.0174087 + 0.0100509i
\(251\) 7.22474 4.17121i 0.456022 0.263284i −0.254348 0.967113i \(-0.581861\pi\)
0.710370 + 0.703828i \(0.248528\pi\)
\(252\) 0 0
\(253\) −0.348469 0.603566i −0.0219081 0.0379459i
\(254\) 0.778539i 0.0488499i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −13.5000 23.3827i −0.842107 1.45857i −0.888110 0.459631i \(-0.847982\pi\)
0.0460033 0.998941i \(-0.485352\pi\)
\(258\) 0 0
\(259\) 2.51059i 0.156000i
\(260\) 5.44949 + 9.43879i 0.337963 + 0.585369i
\(261\) 0 0
\(262\) −10.2247 + 5.90326i −0.631687 + 0.364705i
\(263\) −7.37628 4.25869i −0.454841 0.262602i 0.255032 0.966933i \(-0.417914\pi\)
−0.709872 + 0.704330i \(0.751247\pi\)
\(264\) 0 0
\(265\) 7.70674i 0.473421i
\(266\) −4.00000 1.73205i −0.245256 0.106199i
\(267\) 0 0
\(268\) 8.02270 + 4.63191i 0.490065 + 0.282939i
\(269\) 5.72474 9.91555i 0.349044 0.604562i −0.637036 0.770834i \(-0.719840\pi\)
0.986080 + 0.166272i \(0.0531731\pi\)
\(270\) 0 0
\(271\) −2.62372 + 4.54442i −0.159380 + 0.276054i −0.934645 0.355582i \(-0.884283\pi\)
0.775265 + 0.631636i \(0.217616\pi\)
\(272\) 2.05051 1.18386i 0.124330 0.0717822i
\(273\) 0 0
\(274\) 7.07107i 0.427179i
\(275\) 4.65153 2.68556i 0.280498 0.161946i
\(276\) 0 0
\(277\) 12.3485 0.741948 0.370974 0.928643i \(-0.379024\pi\)
0.370974 + 0.928643i \(0.379024\pi\)
\(278\) −21.8990 −1.31341
\(279\) 0 0
\(280\) 2.72474 + 1.57313i 0.162835 + 0.0940126i
\(281\) −2.87628 4.98186i −0.171584 0.297193i 0.767390 0.641181i \(-0.221555\pi\)
−0.938974 + 0.343988i \(0.888222\pi\)
\(282\) 0 0
\(283\) 0.500000 0.866025i 0.0297219 0.0514799i −0.850782 0.525519i \(-0.823871\pi\)
0.880504 + 0.474039i \(0.157204\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −3.79796 −0.224578
\(287\) −3.94949 + 6.84072i −0.233131 + 0.403795i
\(288\) 0 0
\(289\) −5.69694 9.86739i −0.335114 0.580435i
\(290\) 20.0227 + 11.5601i 1.17577 + 0.678833i
\(291\) 0 0
\(292\) 11.7980 0.690423
\(293\) 2.75255 0.160806 0.0804029 0.996762i \(-0.474379\pi\)
0.0804029 + 0.996762i \(0.474379\pi\)
\(294\) 0 0
\(295\) −3.00000 + 1.73205i −0.174667 + 0.100844i
\(296\) 2.51059i 0.145925i
\(297\) 0 0
\(298\) −4.22474 + 2.43916i −0.244733 + 0.141297i
\(299\) 1.10102 1.90702i 0.0636737 0.110286i
\(300\) 0 0
\(301\) 3.22474 5.58542i 0.185871 0.321938i
\(302\) 13.3485 + 7.70674i 0.768118 + 0.443473i
\(303\) 0 0
\(304\) 4.00000 + 1.73205i 0.229416 + 0.0993399i
\(305\) 9.75663i 0.558663i
\(306\) 0 0
\(307\) −12.0000 6.92820i −0.684876 0.395413i 0.116814 0.993154i \(-0.462732\pi\)
−0.801690 + 0.597740i \(0.796065\pi\)
\(308\) −0.949490 + 0.548188i −0.0541022 + 0.0312359i
\(309\) 0 0
\(310\) −5.44949 9.43879i −0.309510 0.536087i
\(311\) 25.9487i 1.47141i −0.677300 0.735707i \(-0.736850\pi\)
0.677300 0.735707i \(-0.263150\pi\)
\(312\) 0 0
\(313\) −6.44949 11.1708i −0.364547 0.631413i 0.624157 0.781299i \(-0.285443\pi\)
−0.988703 + 0.149886i \(0.952109\pi\)
\(314\) 8.34847 + 14.4600i 0.471131 + 0.816023i
\(315\) 0 0
\(316\) 6.92820i 0.389742i
\(317\) 6.00000 + 10.3923i 0.336994 + 0.583690i 0.983866 0.178908i \(-0.0572566\pi\)
−0.646872 + 0.762598i \(0.723923\pi\)
\(318\) 0 0
\(319\) −6.97730 + 4.02834i −0.390654 + 0.225544i
\(320\) −2.72474 1.57313i −0.152318 0.0879408i
\(321\) 0 0
\(322\) 0.635674i 0.0354248i
\(323\) −4.10102 + 9.47090i −0.228187 + 0.526975i
\(324\) 0 0
\(325\) 14.6969 + 8.48528i 0.815239 + 0.470679i
\(326\) 9.44949 16.3670i 0.523359 0.906484i
\(327\) 0 0
\(328\) 3.94949 6.84072i 0.218074 0.377715i
\(329\) −6.12372 + 3.53553i −0.337612 + 0.194920i
\(330\) 0 0
\(331\) 33.9411i 1.86557i −0.360429 0.932786i \(-0.617370\pi\)
0.360429 0.932786i \(-0.382630\pi\)
\(332\) 4.89898 2.82843i 0.268866 0.155230i
\(333\) 0 0
\(334\) −6.00000 −0.328305
\(335\) 29.1464 1.59244
\(336\) 0 0
\(337\) 0.303062 + 0.174973i 0.0165088 + 0.00953137i 0.508232 0.861220i \(-0.330299\pi\)
−0.491723 + 0.870752i \(0.663633\pi\)
\(338\) 0.500000 + 0.866025i 0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 3.72474 6.45145i 0.202003 0.349879i
\(341\) 3.79796 0.205671
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −3.22474 + 5.58542i −0.173867 + 0.301146i
\(345\) 0 0
\(346\) −7.34847 12.7279i −0.395056 0.684257i
\(347\) 11.1464 + 6.43539i 0.598372 + 0.345470i 0.768401 0.639969i \(-0.221053\pi\)
−0.170029 + 0.985439i \(0.554386\pi\)
\(348\) 0 0
\(349\) 27.3485 1.46393 0.731965 0.681342i \(-0.238603\pi\)
0.731965 + 0.681342i \(0.238603\pi\)
\(350\) 4.89898 0.261861
\(351\) 0 0
\(352\) 0.949490 0.548188i 0.0506080 0.0292185i
\(353\) 23.1523i 1.23227i 0.787639 + 0.616137i \(0.211303\pi\)
−0.787639 + 0.616137i \(0.788697\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.949490 + 1.64456i −0.0503229 + 0.0871617i
\(357\) 0 0
\(358\) 9.39898 16.2795i 0.496752 0.860399i
\(359\) 26.4495 + 15.2706i 1.39595 + 0.805952i 0.993965 0.109694i \(-0.0349870\pi\)
0.401985 + 0.915646i \(0.368320\pi\)
\(360\) 0 0
\(361\) −18.5000 + 4.33013i −0.973684 + 0.227901i
\(362\) 8.48528i 0.445976i
\(363\) 0 0
\(364\) −3.00000 1.73205i −0.157243 0.0907841i
\(365\) 32.1464 18.5597i 1.68262 0.971462i
\(366\) 0 0
\(367\) −3.17423 5.49794i −0.165694 0.286990i 0.771208 0.636584i \(-0.219653\pi\)
−0.936901 + 0.349594i \(0.886320\pi\)
\(368\) 0.635674i 0.0331368i
\(369\) 0 0
\(370\) −3.94949 6.84072i −0.205324 0.355632i
\(371\) −1.22474 2.12132i −0.0635856 0.110133i
\(372\) 0 0
\(373\) 4.06767i 0.210616i −0.994440 0.105308i \(-0.966417\pi\)
0.994440 0.105308i \(-0.0335828\pi\)
\(374\) 1.29796 + 2.24813i 0.0671159 + 0.116248i
\(375\) 0 0
\(376\) 6.12372 3.53553i 0.315807 0.182331i
\(377\) −22.0454 12.7279i −1.13540 0.655521i
\(378\) 0 0
\(379\) 6.92820i 0.355878i 0.984042 + 0.177939i \(0.0569430\pi\)
−0.984042 + 0.177939i \(0.943057\pi\)
\(380\) 13.6237 1.57313i 0.698882 0.0807000i
\(381\) 0 0
\(382\) −6.79796 3.92480i −0.347814 0.200810i
\(383\) 10.8990 18.8776i 0.556912 0.964600i −0.440840 0.897586i \(-0.645319\pi\)
0.997752 0.0670140i \(-0.0213472\pi\)
\(384\) 0 0
\(385\) −1.72474 + 2.98735i −0.0879011 + 0.152249i
\(386\) −8.84847 + 5.10867i −0.450375 + 0.260024i
\(387\) 0 0
\(388\) 8.48528i 0.430775i
\(389\) −20.4495 + 11.8065i −1.03683 + 0.598614i −0.918934 0.394412i \(-0.870948\pi\)
−0.117896 + 0.993026i \(0.537615\pi\)
\(390\) 0 0
\(391\) −1.50510 −0.0761163
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −17.1464 9.89949i −0.863825 0.498729i
\(395\) 10.8990 + 18.8776i 0.548387 + 0.949834i
\(396\) 0 0
\(397\) 2.67423 4.63191i 0.134216 0.232469i −0.791082 0.611711i \(-0.790482\pi\)
0.925298 + 0.379242i \(0.123815\pi\)
\(398\) −0.898979 −0.0450618
\(399\) 0 0
\(400\) −4.89898 −0.244949
\(401\) 12.0000 20.7846i 0.599251 1.03793i −0.393680 0.919247i \(-0.628798\pi\)
0.992932 0.118686i \(-0.0378683\pi\)
\(402\) 0 0
\(403\) 6.00000 + 10.3923i 0.298881 + 0.517678i
\(404\) 9.27526 + 5.35507i 0.461461 + 0.266425i
\(405\) 0 0
\(406\) −7.34847 −0.364698
\(407\) 2.75255 0.136439
\(408\) 0 0
\(409\) 26.6969 15.4135i 1.32008 0.762148i 0.336338 0.941741i \(-0.390812\pi\)
0.983741 + 0.179594i \(0.0574783\pi\)
\(410\) 24.8523i 1.22737i
\(411\) 0 0
\(412\) 0.825765 0.476756i 0.0406825 0.0234881i
\(413\) 0.550510 0.953512i 0.0270888 0.0469192i
\(414\) 0 0
\(415\) 8.89898 15.4135i 0.436834 0.756618i
\(416\) 3.00000 + 1.73205i 0.147087 + 0.0849208i
\(417\) 0 0
\(418\) −1.89898 + 4.38551i −0.0928821 + 0.214502i
\(419\) 20.6417i 1.00842i 0.863582 + 0.504208i \(0.168215\pi\)
−0.863582 + 0.504208i \(0.831785\pi\)
\(420\) 0 0
\(421\) −19.8712 11.4726i −0.968462 0.559142i −0.0696948 0.997568i \(-0.522203\pi\)
−0.898767 + 0.438427i \(0.855536\pi\)
\(422\) 1.34847 0.778539i 0.0656425 0.0378987i
\(423\) 0 0
\(424\) 1.22474 + 2.12132i 0.0594789 + 0.103020i
\(425\) 11.5994i 0.562655i
\(426\) 0 0
\(427\) −1.55051 2.68556i −0.0750345 0.129963i
\(428\) 0.550510 + 0.953512i 0.0266099 + 0.0460897i
\(429\) 0 0
\(430\) 20.2918i 0.978557i
\(431\) 17.1742 + 29.7466i 0.827254 + 1.43285i 0.900185 + 0.435509i \(0.143431\pi\)
−0.0729308 + 0.997337i \(0.523235\pi\)
\(432\) 0 0
\(433\) 32.6969 18.8776i 1.57131 0.907199i 0.575306 0.817938i \(-0.304883\pi\)
0.996008 0.0892608i \(-0.0284505\pi\)
\(434\) 3.00000 + 1.73205i 0.144005 + 0.0831411i
\(435\) 0 0
\(436\) 14.4600i 0.692507i
\(437\) −1.65153 2.22486i −0.0790034 0.106430i
\(438\) 0 0
\(439\) −30.5227 17.6223i −1.45677 0.841066i −0.457918 0.888994i \(-0.651405\pi\)
−0.998851 + 0.0479282i \(0.984738\pi\)
\(440\) 1.72474 2.98735i 0.0822240 0.142416i
\(441\) 0 0
\(442\) −4.10102 + 7.10318i −0.195066 + 0.337864i
\(443\) −24.4949 + 14.1421i −1.16379 + 0.671913i −0.952209 0.305448i \(-0.901194\pi\)
−0.211579 + 0.977361i \(0.567861\pi\)
\(444\) 0 0
\(445\) 5.97469i 0.283228i
\(446\) −16.8712 + 9.74058i −0.798873 + 0.461230i
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 22.8990 1.08067 0.540335 0.841450i \(-0.318298\pi\)
0.540335 + 0.841450i \(0.318298\pi\)
\(450\) 0 0
\(451\) 7.50000 + 4.33013i 0.353161 + 0.203898i
\(452\) −2.44949 4.24264i −0.115214 0.199557i
\(453\) 0 0
\(454\) −4.22474 + 7.31747i −0.198277 + 0.343426i
\(455\) −10.8990 −0.510952
\(456\) 0 0
\(457\) 24.5959 1.15055 0.575274 0.817961i \(-0.304895\pi\)
0.575274 + 0.817961i \(0.304895\pi\)
\(458\) −5.67423 + 9.82806i −0.265140 + 0.459235i
\(459\) 0 0
\(460\) 1.00000 + 1.73205i 0.0466252 + 0.0807573i
\(461\) −2.42168 1.39816i −0.112789 0.0651188i 0.442544 0.896747i \(-0.354076\pi\)
−0.555333 + 0.831628i \(0.687409\pi\)
\(462\) 0 0
\(463\) −14.0454 −0.652745 −0.326373 0.945241i \(-0.605826\pi\)
−0.326373 + 0.945241i \(0.605826\pi\)
\(464\) 7.34847 0.341144
\(465\) 0 0
\(466\) 13.1010 7.56388i 0.606893 0.350390i
\(467\) 37.2624i 1.72430i 0.506656 + 0.862148i \(0.330881\pi\)
−0.506656 + 0.862148i \(0.669119\pi\)
\(468\) 0 0
\(469\) −8.02270 + 4.63191i −0.370454 + 0.213882i
\(470\) 11.1237 19.2669i 0.513099 0.888714i
\(471\) 0 0
\(472\) −0.550510 + 0.953512i −0.0253393 + 0.0438889i
\(473\) −6.12372 3.53553i −0.281569 0.162564i
\(474\) 0 0
\(475\) 17.1464 12.7279i 0.786732 0.583997i
\(476\) 2.36773i 0.108525i
\(477\) 0 0
\(478\) −10.6237 6.13361i −0.485918 0.280545i
\(479\) −23.4495 + 13.5386i −1.07143 + 0.618593i −0.928573 0.371150i \(-0.878964\pi\)
−0.142861 + 0.989743i \(0.545630\pi\)
\(480\) 0 0
\(481\) 4.34847 + 7.53177i 0.198273 + 0.343419i
\(482\) 13.8564i 0.631142i
\(483\) 0 0
\(484\) −4.89898 8.48528i −0.222681 0.385695i
\(485\) 13.3485 + 23.1202i 0.606123 + 1.04984i
\(486\) 0 0
\(487\) 1.12848i 0.0511365i −0.999673 0.0255683i \(-0.991860\pi\)
0.999673 0.0255683i \(-0.00813952\pi\)
\(488\) 1.55051 + 2.68556i 0.0701883 + 0.121570i
\(489\) 0 0
\(490\) −2.72474 + 1.57313i −0.123091 + 0.0710669i
\(491\) −7.74745 4.47299i −0.349637 0.201863i 0.314888 0.949129i \(-0.398033\pi\)
−0.664526 + 0.747266i \(0.731366\pi\)
\(492\) 0 0
\(493\) 17.3992i 0.783619i
\(494\) −15.0000 + 1.73205i −0.674882 + 0.0779287i
\(495\) 0 0
\(496\) −3.00000 1.73205i −0.134704 0.0777714i
\(497\) 0 0
\(498\) 0 0
\(499\) 1.57321 2.72489i 0.0704267 0.121983i −0.828662 0.559750i \(-0.810897\pi\)
0.899088 + 0.437767i \(0.144231\pi\)
\(500\) 0.275255 0.158919i 0.0123098 0.00710706i
\(501\) 0 0
\(502\) 8.34242i 0.372340i
\(503\) −10.4722 + 6.04612i −0.466932 + 0.269583i −0.714955 0.699171i \(-0.753553\pi\)
0.248023 + 0.968754i \(0.420219\pi\)
\(504\) 0 0
\(505\) 33.6969 1.49949
\(506\) −0.696938 −0.0309827
\(507\) 0 0
\(508\) −0.674235 0.389270i −0.0299143 0.0172710i
\(509\) 5.17423 + 8.96204i 0.229344 + 0.397235i 0.957614 0.288055i \(-0.0930086\pi\)
−0.728270 + 0.685290i \(0.759675\pi\)
\(510\) 0 0
\(511\) −5.89898 + 10.2173i −0.260955 + 0.451988i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −27.0000 −1.19092
\(515\) 1.50000 2.59808i 0.0660979 0.114485i
\(516\) 0 0
\(517\) 3.87628 + 6.71391i 0.170478 + 0.295277i
\(518\) 2.17423 + 1.25529i 0.0955304 + 0.0551545i
\(519\) 0 0
\(520\) 10.8990 0.477952
\(521\) −9.79796 −0.429256 −0.214628 0.976696i \(-0.568854\pi\)
−0.214628 + 0.976696i \(0.568854\pi\)
\(522\) 0 0
\(523\) −4.80306 + 2.77305i −0.210023 + 0.121257i −0.601322 0.799007i \(-0.705359\pi\)
0.391299 + 0.920264i \(0.372026\pi\)
\(524\) 11.8065i 0.515770i
\(525\) 0 0
\(526\) −7.37628 + 4.25869i −0.321621 + 0.185688i
\(527\) 4.10102 7.10318i 0.178643 0.309419i
\(528\) 0 0
\(529\) −11.2980 + 19.5686i −0.491216 + 0.850810i
\(530\) 6.67423 + 3.85337i 0.289910 + 0.167380i
\(531\) 0 0
\(532\) −3.50000 + 2.59808i −0.151744 + 0.112641i
\(533\) 27.3629i 1.18522i
\(534\) 0 0
\(535\) 3.00000 + 1.73205i 0.129701 + 0.0748831i
\(536\) 8.02270 4.63191i 0.346528 0.200068i
\(537\) 0 0
\(538\) −5.72474 9.91555i −0.246811 0.427490i
\(539\) 1.09638i 0.0472243i
\(540\) 0 0
\(541\) −15.7247 27.2361i −0.676060 1.17097i −0.976158 0.217061i \(-0.930353\pi\)
0.300098 0.953908i \(-0.402980\pi\)
\(542\) 2.62372 + 4.54442i 0.112699 + 0.195200i
\(543\) 0 0
\(544\) 2.36773i 0.101515i
\(545\) −22.7474 39.3997i −0.974394 1.68770i
\(546\) 0 0
\(547\) −6.30306 + 3.63907i −0.269499 + 0.155596i −0.628660 0.777680i \(-0.716396\pi\)
0.359161 + 0.933276i \(0.383063\pi\)
\(548\) 6.12372 + 3.53553i 0.261593 + 0.151031i
\(549\) 0 0
\(550\) 5.37113i 0.229026i
\(551\) −25.7196 + 19.0919i −1.09569 + 0.813342i
\(552\) 0 0
\(553\) −6.00000 3.46410i −0.255146 0.147309i
\(554\) 6.17423 10.6941i 0.262318 0.454348i
\(555\) 0 0
\(556\) −10.9495 + 18.9651i −0.464362 + 0.804298i
\(557\) 9.55051 5.51399i 0.404668 0.233635i −0.283828 0.958875i \(-0.591605\pi\)
0.688496 + 0.725240i \(0.258271\pi\)
\(558\) 0 0
\(559\) 22.3417i 0.944953i
\(560\) 2.72474 1.57313i 0.115141 0.0664770i
\(561\) 0 0
\(562\) −5.75255 −0.242657
\(563\) 35.1464 1.48125 0.740623 0.671921i \(-0.234531\pi\)
0.740623 + 0.671921i \(0.234531\pi\)
\(564\) 0 0
\(565\) −13.3485 7.70674i −0.561574 0.324225i
\(566\) −0.500000 0.866025i −0.0210166 0.0364018i
\(567\) 0 0
\(568\) 0 0
\(569\) 35.3939 1.48379 0.741894 0.670517i \(-0.233928\pi\)
0.741894 + 0.670517i \(0.233928\pi\)
\(570\) 0 0
\(571\) −24.9444 −1.04389 −0.521945 0.852979i \(-0.674793\pi\)
−0.521945 + 0.852979i \(0.674793\pi\)
\(572\) −1.89898 + 3.28913i −0.0794003 + 0.137525i
\(573\) 0 0
\(574\) 3.94949 + 6.84072i 0.164849 + 0.285526i
\(575\) 2.69694 + 1.55708i 0.112470 + 0.0649346i
\(576\) 0 0
\(577\) −11.3485 −0.472443 −0.236221 0.971699i \(-0.575909\pi\)
−0.236221 + 0.971699i \(0.575909\pi\)
\(578\) −11.3939 −0.473923
\(579\) 0 0
\(580\) 20.0227 11.5601i 0.831398 0.480008i
\(581\) 5.65685i 0.234686i
\(582\) 0 0
\(583\) −2.32577 + 1.34278i −0.0963234 + 0.0556123i
\(584\) 5.89898 10.2173i 0.244102 0.422796i
\(585\) 0 0
\(586\) 1.37628 2.38378i 0.0568534 0.0984730i
\(587\) −6.55051 3.78194i −0.270368 0.156097i 0.358687 0.933458i \(-0.383225\pi\)
−0.629055 + 0.777361i \(0.716558\pi\)
\(588\) 0 0
\(589\) 15.0000 1.73205i 0.618064 0.0713679i
\(590\) 3.46410i 0.142615i
\(591\) 0 0
\(592\) −2.17423 1.25529i −0.0893605 0.0515923i
\(593\) −18.9495 + 10.9405i −0.778162 + 0.449272i −0.835779 0.549067i \(-0.814983\pi\)
0.0576163 + 0.998339i \(0.481650\pi\)
\(594\) 0 0
\(595\) 3.72474 + 6.45145i 0.152700 + 0.264484i
\(596\) 4.87832i 0.199824i
\(597\) 0 0
\(598\) −1.10102 1.90702i −0.0450241 0.0779840i
\(599\) −1.92679 3.33729i −0.0787263 0.136358i 0.823974 0.566627i \(-0.191752\pi\)
−0.902701 + 0.430269i \(0.858419\pi\)
\(600\) 0 0
\(601\) 38.5337i 1.57182i −0.618339 0.785911i \(-0.712194\pi\)
0.618339 0.785911i \(-0.287806\pi\)
\(602\) −3.22474 5.58542i −0.131431 0.227645i
\(603\) 0 0
\(604\) 13.3485 7.70674i 0.543142 0.313583i
\(605\) −26.6969 15.4135i −1.08538 0.626647i
\(606\) 0 0
\(607\) 36.1981i 1.46924i 0.678481 + 0.734618i \(0.262638\pi\)
−0.678481 + 0.734618i \(0.737362\pi\)
\(608\) 3.50000 2.59808i 0.141944 0.105366i
\(609\) 0 0
\(610\) 8.44949 + 4.87832i 0.342110 + 0.197517i
\(611\) −12.2474 + 21.2132i −0.495479 + 0.858194i
\(612\) 0 0
\(613\) 5.52270 9.56560i 0.223060 0.386351i −0.732676 0.680578i \(-0.761729\pi\)
0.955736 + 0.294227i \(0.0950621\pi\)
\(614\) −12.0000 + 6.92820i −0.484281 + 0.279600i
\(615\) 0 0
\(616\) 1.09638i 0.0441743i
\(617\) 17.2702 9.97093i 0.695270 0.401414i −0.110313 0.993897i \(-0.535185\pi\)
0.805583 + 0.592482i \(0.201852\pi\)
\(618\) 0 0
\(619\) 6.89898 0.277293 0.138647 0.990342i \(-0.455725\pi\)
0.138647 + 0.990342i \(0.455725\pi\)
\(620\) −10.8990 −0.437714
\(621\) 0 0
\(622\) −22.4722 12.9743i −0.901053 0.520223i
\(623\) −0.949490 1.64456i −0.0380405 0.0658881i
\(624\) 0 0
\(625\) 12.7474 22.0792i 0.509898 0.883169i
\(626\) −12.8990 −0.515547
\(627\) 0 0
\(628\) 16.6969 0.666280
\(629\) 2.97219 5.14799i 0.118509 0.205264i
\(630\) 0 0
\(631\) −5.77526 10.0030i −0.229909 0.398215i 0.727872 0.685713i \(-0.240510\pi\)
−0.957781 + 0.287499i \(0.907176\pi\)
\(632\) 6.00000 + 3.46410i 0.238667 + 0.137795i
\(633\) 0 0
\(634\) 12.0000 0.476581
\(635\) −2.44949 −0.0972050
\(636\) 0 0
\(637\) 3.00000 1.73205i 0.118864 0.0686264i
\(638\) 8.05669i 0.318967i
\(639\) 0 0
\(640\) −2.72474 + 1.57313i −0.107705 + 0.0621835i
\(641\) 8.02270 13.8957i 0.316878 0.548848i −0.662957 0.748657i \(-0.730699\pi\)
0.979835 + 0.199809i \(0.0640322\pi\)
\(642\) 0 0
\(643\) 22.5454 39.0498i 0.889104 1.53997i 0.0481678 0.998839i \(-0.484662\pi\)
0.840936 0.541134i \(-0.182005\pi\)
\(644\) −0.550510 0.317837i −0.0216931 0.0125245i
\(645\) 0 0
\(646\) 6.15153 + 8.28704i 0.242029 + 0.326049i
\(647\) 17.8133i 0.700314i −0.936691 0.350157i \(-0.886128\pi\)
0.936691 0.350157i \(-0.113872\pi\)
\(648\) 0 0
\(649\) −1.04541 0.603566i −0.0410358 0.0236921i
\(650\) 14.6969 8.48528i 0.576461 0.332820i
\(651\) 0 0
\(652\) −9.44949 16.3670i −0.370071 0.640981i
\(653\) 42.9192i 1.67956i −0.542928 0.839779i \(-0.682684\pi\)
0.542928 0.839779i \(-0.317316\pi\)
\(654\) 0 0
\(655\) 18.5732 + 32.1698i 0.725716 + 1.25698i
\(656\) −3.94949 6.84072i −0.154202 0.267085i
\(657\) 0 0
\(658\) 7.07107i 0.275659i
\(659\) 5.29796 + 9.17633i 0.206379 + 0.357459i 0.950571 0.310506i \(-0.100499\pi\)
−0.744192 + 0.667966i \(0.767165\pi\)
\(660\) 0 0
\(661\) −19.0454 + 10.9959i −0.740781 + 0.427690i −0.822353 0.568978i \(-0.807339\pi\)
0.0815725 + 0.996667i \(0.474006\pi\)
\(662\) −29.3939 16.9706i −1.14243 0.659580i
\(663\) 0 0
\(664\) 5.65685i 0.219529i
\(665\) −5.44949 + 12.5851i −0.211322 + 0.488028i
\(666\) 0 0
\(667\) −4.04541 2.33562i −0.156639 0.0904355i
\(668\) −3.00000 + 5.19615i −0.116073 + 0.201045i
\(669\) 0 0
\(670\) 14.5732 25.2415i 0.563012 0.975166i
\(671\) −2.94439 + 1.69994i −0.113667 + 0.0656256i
\(672\) 0 0
\(673\) 48.3224i 1.86269i −0.364133 0.931347i \(-0.618635\pi\)
0.364133 0.931347i \(-0.381365\pi\)
\(674\) 0.303062 0.174973i 0.0116735 0.00673970i
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 29.4495 1.13184 0.565918 0.824462i \(-0.308522\pi\)
0.565918 + 0.824462i \(0.308522\pi\)
\(678\) 0 0
\(679\) −7.34847 4.24264i −0.282008 0.162818i
\(680\) −3.72474 6.45145i −0.142837 0.247402i
\(681\) 0 0
\(682\) 1.89898 3.28913i 0.0727157 0.125947i
\(683\) 5.20204 0.199051 0.0995253 0.995035i \(-0.468268\pi\)
0.0995253 + 0.995035i \(0.468268\pi\)
\(684\) 0 0
\(685\) 22.2474 0.850031
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) 0 0
\(688\) 3.22474 + 5.58542i 0.122942 + 0.212942i
\(689\) −7.34847 4.24264i −0.279954 0.161632i
\(690\) 0 0
\(691\) −21.6969 −0.825390 −0.412695 0.910869i \(-0.635413\pi\)
−0.412695 + 0.910869i \(0.635413\pi\)
\(692\) −14.6969 −0.558694
\(693\) 0 0
\(694\) 11.1464 6.43539i 0.423113 0.244284i
\(695\) 68.9000i 2.61353i
\(696\) 0 0
\(697\) 16.1969 9.35131i 0.613503 0.354206i
\(698\) 13.6742 23.6845i 0.517577 0.896470i
\(699\) 0 0
\(700\) 2.44949 4.24264i 0.0925820 0.160357i
\(701\) 18.4268 + 10.6387i 0.695970 + 0.401819i 0.805845 0.592127i \(-0.201712\pi\)
−0.109875 + 0.993945i \(0.535045\pi\)
\(702\) 0 0
\(703\) 10.8712 1.25529i 0.410014 0.0473443i
\(704\) 1.09638i 0.0413212i
\(705\) 0 0
\(706\) 20.0505 + 11.5762i 0.754611 + 0.435675i
\(707\) −9.27526 + 5.35507i −0.348832 + 0.201398i
\(708\) 0 0
\(709\) −18.9722 32.8608i −0.712516 1.23411i −0.963910 0.266229i \(-0.914222\pi\)
0.251394 0.967885i \(-0.419111\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.949490 + 1.64456i 0.0355836 + 0.0616327i
\(713\) 1.10102 + 1.90702i 0.0412335 + 0.0714186i
\(714\) 0 0
\(715\) 11.9494i 0.446882i
\(716\) −9.39898 16.2795i −0.351256 0.608394i
\(717\) 0 0
\(718\) 26.4495 15.2706i 0.987086 0.569894i
\(719\) −2.87628 1.66062i −0.107267 0.0619306i 0.445407 0.895328i \(-0.353059\pi\)
−0.552674 + 0.833398i \(0.686392\pi\)
\(720\) 0 0
\(721\) 0.953512i 0.0355106i
\(722\) −5.50000 + 18.1865i −0.204689 + 0.676833i
\(723\) 0 0
\(724\) 7.34847 + 4.24264i 0.273104 + 0.157676i
\(725\) 18.0000 31.1769i 0.668503 1.15788i
\(726\) 0 0
\(727\) 20.2753 35.1178i 0.751968 1.30245i −0.194900 0.980823i \(-0.562438\pi\)
0.946868 0.321623i \(-0.104228\pi\)
\(728\) −3.00000 + 1.73205i −0.111187 + 0.0641941i
\(729\) 0 0
\(730\) 37.1195i 1.37385i
\(731\) −13.2247 + 7.63531i −0.489135 + 0.282402i
\(732\) 0 0
\(733\) 38.7423 1.43098 0.715491 0.698622i \(-0.246203\pi\)
0.715491 + 0.698622i \(0.246203\pi\)
\(734\) −6.34847 −0.234326
\(735\) 0 0
\(736\) 0.550510 + 0.317837i 0.0202921 + 0.0117156i
\(737\) 5.07832 + 8.79590i 0.187062 + 0.324001i
\(738\) 0 0
\(739\) −1.00000 + 1.73205i −0.0367856 + 0.0637145i −0.883832 0.467804i \(-0.845045\pi\)
0.847046 + 0.531519i \(0.178379\pi\)
\(740\) −7.89898 −0.290372
\(741\) 0 0
\(742\) −2.44949 −0.0899236
\(743\) −25.8712 + 44.8102i −0.949121 + 1.64393i −0.201840 + 0.979419i \(0.564692\pi\)
−0.747281 + 0.664508i \(0.768641\pi\)
\(744\) 0 0
\(745\) 7.67423 + 13.2922i 0.281162 + 0.486987i
\(746\) −3.52270 2.03383i −0.128975 0.0744640i
\(747\) 0 0
\(748\) 2.59592 0.0949162
\(749\) −1.10102 −0.0402304
\(750\) 0 0
\(751\) −19.6515 + 11.3458i −0.717095 + 0.414015i −0.813682 0.581310i \(-0.802540\pi\)
0.0965878 + 0.995324i \(0.469207\pi\)
\(752\) 7.07107i 0.257855i
\(753\) 0 0
\(754\) −22.0454 + 12.7279i −0.802846 + 0.463524i
\(755\) 24.2474 41.9978i 0.882455 1.52846i
\(756\) 0 0
\(757\) 9.07321 15.7153i 0.329772 0.571181i −0.652695 0.757621i \(-0.726362\pi\)
0.982466 + 0.186440i \(0.0596949\pi\)
\(758\) 6.00000 + 3.46410i 0.217930 + 0.125822i
\(759\) 0 0
\(760\) 5.44949 12.5851i 0.197674 0.456508i
\(761\) 29.5556i 1.07139i 0.844411 + 0.535695i \(0.179950\pi\)
−0.844411 + 0.535695i \(0.820050\pi\)
\(762\) 0 0
\(763\) 12.5227 + 7.22999i 0.453352 + 0.261743i
\(764\) −6.79796 + 3.92480i −0.245942 + 0.141994i
\(765\) 0 0
\(766\) −10.8990 18.8776i −0.393796 0.682075i
\(767\) 3.81405i 0.137717i
\(768\) 0 0
\(769\) 16.0227 + 27.7521i 0.577793 + 1.00077i 0.995732 + 0.0922923i \(0.0294194\pi\)
−0.417938 + 0.908475i \(0.637247\pi\)
\(770\) 1.72474 + 2.98735i 0.0621555 + 0.107656i
\(771\) 0 0
\(772\) 10.2173i 0.367730i
\(773\) −20.1742 34.9428i −0.725617 1.25681i −0.958720 0.284353i \(-0.908221\pi\)
0.233103 0.972452i \(-0.425112\pi\)
\(774\) 0 0
\(775\) −14.6969 + 8.48528i −0.527930 + 0.304800i
\(776\) 7.34847 + 4.24264i 0.263795 + 0.152302i
\(777\) 0 0
\(778\) 23.6130i 0.846568i
\(779\) 31.5959 + 13.6814i 1.13204 + 0.490188i
\(780\) 0 0
\(781\) 0 0
\(782\) −0.752551 + 1.30346i −0.0269112 + 0.0466115i
\(783\) 0 0
\(784\) −0.500000 + 0.866025i −0.0178571 + 0.0309295i
\(785\) 45.4949 26.2665i 1.62378 0.937491i
\(786\) 0 0
\(787\) 3.63907i 0.129719i −0.997894 0.0648595i \(-0.979340\pi\)
0.997894 0.0648595i \(-0.0206599\pi\)
\(788\) −17.1464 + 9.89949i −0.610816 + 0.352655i
\(789\) 0 0
\(790\) 21.7980 0.775537
\(791\) 4.89898 0.174188
\(792\) 0 0
\(793\) −9.30306 5.37113i −0.330361 0.190734i
\(794\) −2.67423 4.63191i −0.0949050 0.164380i
\(795\) 0 0
\(796\) −0.449490 + 0.778539i −0.0159317 + 0.0275946i
\(797\) 10.8434 0.384092 0.192046 0.981386i \(-0.438488\pi\)
0.192046 + 0.981386i \(0.438488\pi\)
\(798\) 0 0
\(799\) 16.7423 0.592302
\(800\) −2.44949 + 4.24264i −0.0866025 + 0.150000i
\(801\) 0 0
\(802\) −12.0000 20.7846i −0.423735 0.733930i
\(803\) 11.2020 + 6.46750i 0.395311 + 0.228233i
\(804\) 0 0
\(805\) −2.00000 −0.0704907
\(806\) 12.0000 0.422682
\(807\) 0 0
\(808\) 9.27526 5.35507i 0.326302 0.188391i
\(809\) 4.38551i 0.154186i −0.997024 0.0770931i \(-0.975436\pi\)
0.997024 0.0770931i \(-0.0245639\pi\)
\(810\) 0 0
\(811\) −4.19694 + 2.42310i −0.147374 + 0.0850867i −0.571874 0.820341i \(-0.693783\pi\)
0.424500 + 0.905428i \(0.360450\pi\)
\(812\) −3.67423 + 6.36396i −0.128940 + 0.223331i
\(813\) 0 0
\(814\) 1.37628 2.38378i 0.0482384 0.0835514i
\(815\) −51.4949 29.7306i −1.80379 1.04142i
\(816\) 0 0
\(817\) −25.7980 11.1708i −0.902556 0.390818i
\(818\) 30.8270i 1.07784i
\(819\) 0 0
\(820\) −21.5227 12.4261i −0.751605 0.433940i
\(821\) 40.2929 23.2631i 1.40623 0.811887i 0.411208 0.911541i \(-0.365107\pi\)
0.995022 + 0.0996539i \(0.0317736\pi\)
\(822\) 0 0
\(823\) −15.4495 26.7593i −0.538535 0.932771i −0.998983 0.0450838i \(-0.985645\pi\)
0.460448 0.887687i \(-0.347689\pi\)
\(824\) 0.953512i 0.0332172i
\(825\) 0 0
\(826\) −0.550510 0.953512i −0.0191547 0.0331769i
\(827\) 27.0959 + 46.9315i 0.942217 + 1.63197i 0.761229 + 0.648483i \(0.224596\pi\)
0.180988 + 0.983485i \(0.442070\pi\)
\(828\) 0 0
\(829\) 22.6916i 0.788113i 0.919086 + 0.394056i \(0.128929\pi\)
−0.919086 + 0.394056i \(0.871071\pi\)
\(830\) −8.89898 15.4135i −0.308888 0.535010i
\(831\) 0 0
\(832\) 3.00000 1.73205i 0.104006 0.0600481i
\(833\) −2.05051 1.18386i −0.0710460 0.0410184i
\(834\) 0 0
\(835\) 18.8776i 0.653286i
\(836\) 2.84847 + 3.83732i 0.0985164 + 0.132716i
\(837\) 0 0
\(838\) 17.8763 + 10.3209i 0.617526 + 0.356529i
\(839\) −17.5732 + 30.4377i −0.606695 + 1.05083i 0.385086 + 0.922880i \(0.374172\pi\)
−0.991781 + 0.127946i \(0.959162\pi\)
\(840\) 0 0
\(841\) −12.5000 + 21.6506i −0.431034 + 0.746574i
\(842\) −19.8712 + 11.4726i −0.684806 + 0.395373i
\(843\) 0 0
\(844\) 1.55708i 0.0535968i
\(845\) 2.72474 1.57313i 0.0937341 0.0541174i
\(846\) 0 0
\(847\) 9.79796 0.336662
\(848\) 2.44949 0.0841158
\(849\) 0 0
\(850\) −10.0454 5.79972i −0.344555 0.198929i
\(851\) 0.797959 + 1.38211i 0.0273537 + 0.0473780i
\(852\) 0 0
\(853\) −13.5505 + 23.4702i −0.463961 + 0.803603i −0.999154 0.0411262i \(-0.986905\pi\)
0.535193 + 0.844730i \(0.320239\pi\)
\(854\) −3.10102 −0.106115
\(855\) 0 0
\(856\) 1.10102 0.0376321
\(857\) 2.29796 3.98018i 0.0784968 0.135960i −0.824105 0.566437i \(-0.808321\pi\)
0.902602 + 0.430477i \(0.141655\pi\)
\(858\) 0 0
\(859\) 15.7474 + 27.2754i 0.537296 + 0.930624i 0.999048 + 0.0436151i \(0.0138875\pi\)
−0.461752 + 0.887009i \(0.652779\pi\)
\(860\) 17.5732 + 10.1459i 0.599242 + 0.345972i
\(861\) 0 0
\(862\) 34.3485 1.16991
\(863\) −25.0454 −0.852556 −0.426278 0.904592i \(-0.640175\pi\)
−0.426278 + 0.904592i \(0.640175\pi\)
\(864\) 0 0
\(865\) −40.0454 + 23.1202i −1.36158 + 0.786111i
\(866\) 37.7552i 1.28297i
\(867\) 0 0
\(868\) 3.00000 1.73205i 0.101827 0.0587896i
\(869\) −3.79796 + 6.57826i −0.128837 + 0.223152i
\(870\) 0 0
\(871\) −16.0454 + 27.7915i −0.543678 + 0.941678i
\(872\) −12.5227 7.22999i −0.424072 0.244838i
\(873\) 0 0
\(874\) −2.75255 + 0.317837i −0.0931064 + 0.0107510i
\(875\) 0.317837i 0.0107449i
\(876\) 0 0
\(877\) −44.0908 25.4558i −1.48884 0.859583i −0.488922 0.872327i \(-0.662610\pi\)
−0.999919 + 0.0127446i \(0.995943\pi\)
\(878\) −30.5227 + 17.6223i −1.03009 + 0.594724i
\(879\) 0 0
\(880\) −1.72474 2.98735i −0.0581411 0.100703i
\(881\) 49.5938i 1.67086i −0.549599 0.835429i \(-0.685219\pi\)
0.549599 0.835429i \(-0.314781\pi\)
\(882\) 0 0
\(883\) −1.00000 1.73205i −0.0336527 0.0582882i 0.848709 0.528861i \(-0.177381\pi\)
−0.882361 + 0.470573i \(0.844047\pi\)
\(884\) 4.10102 + 7.10318i 0.137932 + 0.238906i
\(885\) 0 0
\(886\) 28.2843i 0.950229i
\(887\) −24.7980 42.9513i −0.832634 1.44216i −0.895942 0.444170i \(-0.853499\pi\)
0.0633084 0.997994i \(-0.479835\pi\)
\(888\) 0 0
\(889\) 0.674235 0.389270i 0.0226131 0.0130557i
\(890\) 5.17423 + 2.98735i 0.173441 + 0.100136i
\(891\) 0 0
\(892\) 19.4812i 0.652277i
\(893\) 18.3712 + 24.7487i 0.614768 + 0.828185i
\(894\) 0 0
\(895\) −51.2196 29.5717i −1.71208 0.988472i
\(896\) 0.500000 0.866025i 0.0167038 0.0289319i
\(897\) 0 0
\(898\) 11.4495 19.8311i 0.382074 0.661772i
\(899\) 22.0454 12.7279i 0.735256 0.424500i
\(900\) 0 0
\(901\) 5.79972i 0.193217i
\(902\) 7.50000 4.33013i 0.249723 0.144177i
\(903\) 0 0
\(904\) −4.89898 −0.162938
\(905\) 26.6969 0.887436
\(906\) 0 0
\(907\) −13.0454 7.53177i −0.433166 0.250088i 0.267529 0.963550i \(-0.413793\pi\)
−0.700694 + 0.713462i \(0.747126\pi\)
\(908\) 4.22474 + 7.31747i 0.140203 + 0.242839i
\(909\) 0 0
\(910\) −5.44949 + 9.43879i −0.180649 + 0.312893i
\(911\) −52.8434 −1.75078 −0.875389 0.483418i \(-0.839395\pi\)
−0.875389 + 0.483418i \(0.839395\pi\)
\(912\) 0 0
\(913\) 6.20204 0.205258
\(914\) 12.2980 21.3007i 0.406780 0.704564i
\(915\) 0 0
\(916\) 5.67423 + 9.82806i 0.187482 + 0.324728i
\(917\) −10.2247 5.90326i −0.337651 0.194943i
\(918\) 0 0
\(919\) −24.9444 −0.822839 −0.411420 0.911446i \(-0.634967\pi\)
−0.411420 + 0.911446i \(0.634967\pi\)
\(920\) 2.00000 0.0659380
\(921\) 0 0
\(922\) −2.42168 + 1.39816i −0.0797539 + 0.0460459i
\(923\) 0 0
\(924\) 0 0
\(925\) −10.6515 + 6.14966i −0.350220 + 0.202200i
\(926\) −7.02270 + 12.1637i −0.230780 + 0.399723i
\(927\) 0 0
\(928\) 3.67423 6.36396i 0.120613 0.208907i
\(929\) 24.3434 + 14.0546i 0.798680 + 0.461118i 0.843009 0.537899i \(-0.180782\pi\)
−0.0443294 + 0.999017i \(0.514115\pi\)
\(930\) 0 0
\(931\) −0.500000 4.33013i −0.0163868 0.141914i
\(932\) 15.1278i 0.495526i
\(933\) 0 0
\(934\) 32.2702 + 18.6312i 1.05591 + 0.609631i
\(935\) 7.07321 4.08372i 0.231319 0.133552i
\(936\) 0 0
\(937\) −0.573214 0.992836i −0.0187261 0.0324345i 0.856511 0.516130i \(-0.172628\pi\)
−0.875237 + 0.483695i \(0.839294\pi\)
\(938\) 9.26382i 0.302474i
\(939\) 0 0
\(940\) −11.1237 19.2669i −0.362816 0.628416i
\(941\) −17.4217 30.1752i −0.567931 0.983685i −0.996770 0.0803042i \(-0.974411\pi\)
0.428840 0.903381i \(-0.358922\pi\)
\(942\) 0 0
\(943\) 5.02118i 0.163512i
\(944\) 0.550510 + 0.953512i 0.0179176 + 0.0310342i
\(945\) 0 0
\(946\) −6.12372 + 3.53553i −0.199099 + 0.114950i
\(947\) 17.6010 + 10.1620i 0.571956 + 0.330219i 0.757930 0.652336i \(-0.226211\pi\)
−0.185974 + 0.982555i \(0.559544\pi\)
\(948\) 0 0
\(949\) 40.8693i 1.32667i
\(950\) −2.44949 21.2132i −0.0794719 0.688247i
\(951\) 0 0
\(952\) 2.05051 + 1.18386i 0.0664574 + 0.0383692i
\(953\) 4.89898 8.48528i 0.158694 0.274865i −0.775704 0.631097i \(-0.782605\pi\)
0.934398 + 0.356231i \(0.115938\pi\)
\(954\) 0 0
\(955\) −12.3485 + 21.3882i −0.399587 + 0.692105i
\(956\) −10.6237 + 6.13361i −0.343596 + 0.198375i
\(957\) 0 0
\(958\) 27.0771i 0.874823i
\(959\) −6.12372 + 3.53553i −0.197745 + 0.114168i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 8.69694 0.280401
\(963\) 0 0
\(964\) −12.0000 6.92820i −0.386494 0.223142i
\(965\) 16.0732 + 27.8396i 0.517415 + 0.896189i
\(966\) 0 0
\(967\) −17.0454 + 29.5235i −0.548143 + 0.949412i 0.450258 + 0.892898i \(0.351332\pi\)
−0.998402 + 0.0565139i \(0.982001\pi\)
\(968\) −9.79796 −0.314918
\(969\) 0 0
\(970\) 26.6969 0.857187
\(971\) −17.5732 + 30.4377i −0.563951 + 0.976792i 0.433195 + 0.901300i \(0.357386\pi\)
−0.997146 + 0.0754921i \(0.975947\pi\)
\(972\) 0 0
\(973\) −10.9495 18.9651i −0.351025 0.607992i
\(974\) −0.977296 0.564242i −0.0313146 0.0180795i
\(975\) 0 0
\(976\) 3.10102 0.0992612
\(977\) −1.34847 −0.0431414 −0.0215707 0.999767i \(-0.506867\pi\)
−0.0215707 + 0.999767i \(0.506867\pi\)
\(978\) 0 0
\(979\) −1.80306 + 1.04100i −0.0576261 + 0.0332704i
\(980\) 3.14626i 0.100504i
\(981\) 0 0
\(982\) −7.74745 + 4.47299i −0.247231 + 0.142739i
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) −31.1464 + 53.9472i −0.992408 + 1.71890i
\(986\) 15.0681 + 8.69958i 0.479866 + 0.277051i
\(987\) 0 0
\(988\) −6.00000 + 13.8564i −0.190885 + 0.440831i
\(989\) 4.09978i 0.130365i
\(990\) 0 0
\(991\) −44.0908 25.4558i −1.40059 0.808632i −0.406138 0.913812i \(-0.633125\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(992\) −3.00000 + 1.73205i −0.0952501 + 0.0549927i
\(993\) 0 0
\(994\) 0 0
\(995\) 2.82843i 0.0896672i
\(996\) 0 0
\(997\) 16.3258 + 28.2771i 0.517042 + 0.895543i 0.999804 + 0.0197917i \(0.00630031\pi\)
−0.482762 + 0.875752i \(0.660366\pi\)
\(998\) −1.57321 2.72489i −0.0497992 0.0862548i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2394.2.cq.b.1205.1 yes 4
3.2 odd 2 2394.2.cq.a.1205.2 yes 4
19.12 odd 6 2394.2.cq.a.449.2 4
57.50 even 6 inner 2394.2.cq.b.449.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2394.2.cq.a.449.2 4 19.12 odd 6
2394.2.cq.a.1205.2 yes 4 3.2 odd 2
2394.2.cq.b.449.1 yes 4 57.50 even 6 inner
2394.2.cq.b.1205.1 yes 4 1.1 even 1 trivial