Properties

Label 2394.2.cq.b
Level $2394$
Weight $2$
Character orbit 2394.cq
Analytic conductor $19.116$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2394,2,Mod(449,2394)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2394.449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2394, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.cq (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1161862439\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (\beta_{2} - 1) q^{4} + ( - \beta_{3} + \beta_{2} + \beta_1 - 2) q^{5} + q^{7} - q^{8} + ( - \beta_{2} + \beta_1 - 1) q^{10} + ( - 2 \beta_{3} - 2 \beta_{2} + 1) q^{11} + (2 \beta_{2} + 2) q^{13}+ \cdots + \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 6 q^{5} + 4 q^{7} - 4 q^{8} - 6 q^{10} + 12 q^{13} + 2 q^{14} - 2 q^{16} - 18 q^{17} - 2 q^{19} + 6 q^{22} + 12 q^{23} - 2 q^{28} + 2 q^{32} - 18 q^{34} - 6 q^{35} - 16 q^{38}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2394\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(1711\)
\(\chi(n)\) \(-1\) \(1 - \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i
1.22474 0.707107i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i −2.72474 + 1.57313i 0 1.00000 −1.00000 0 −2.72474 1.57313i
449.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.275255 + 0.158919i 0 1.00000 −1.00000 0 −0.275255 0.158919i
1205.1 0.500000 0.866025i 0 −0.500000 0.866025i −2.72474 1.57313i 0 1.00000 −1.00000 0 −2.72474 + 1.57313i
1205.2 0.500000 0.866025i 0 −0.500000 0.866025i −0.275255 0.158919i 0 1.00000 −1.00000 0 −0.275255 + 0.158919i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
57.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2394.2.cq.b yes 4
3.b odd 2 1 2394.2.cq.a 4
19.d odd 6 1 2394.2.cq.a 4
57.f even 6 1 inner 2394.2.cq.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2394.2.cq.a 4 3.b odd 2 1
2394.2.cq.a 4 19.d odd 6 1
2394.2.cq.b yes 4 1.a even 1 1 trivial
2394.2.cq.b yes 4 57.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 6T_{5}^{3} + 13T_{5}^{2} + 6T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(2394, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 22T^{2} + 25 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T + 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 18 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{4} + 54T^{2} + 2916 \) Copy content Toggle raw display
$31$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 42T^{2} + 225 \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots + 225 \) Copy content Toggle raw display
$43$ \( T^{4} - 8 T^{3} + \cdots + 100 \) Copy content Toggle raw display
$47$ \( T^{4} - 50T^{2} + 2500 \) Copy content Toggle raw display
$53$ \( T^{4} + 6T^{2} + 36 \) Copy content Toggle raw display
$59$ \( T^{4} - 12 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$61$ \( T^{4} + 16 T^{3} + \cdots + 1600 \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots + 22500 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 4 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
$79$ \( (T^{2} + 12 T + 48)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 6 T^{3} + \cdots + 225 \) Copy content Toggle raw display
$97$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
show more
show less