Properties

Label 2-2366-1.1-c1-0-41
Degree $2$
Conductor $2366$
Sign $-1$
Analytic cond. $18.8926$
Root an. cond. $4.34656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2·5-s + 6-s + 7-s − 8-s − 2·9-s + 2·10-s + 5·11-s − 12-s − 14-s + 2·15-s + 16-s + 2·17-s + 2·18-s − 4·19-s − 2·20-s − 21-s − 5·22-s − 9·23-s + 24-s − 25-s + 5·27-s + 28-s − 2·30-s + 5·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.632·10-s + 1.50·11-s − 0.288·12-s − 0.267·14-s + 0.516·15-s + 1/4·16-s + 0.485·17-s + 0.471·18-s − 0.917·19-s − 0.447·20-s − 0.218·21-s − 1.06·22-s − 1.87·23-s + 0.204·24-s − 1/5·25-s + 0.962·27-s + 0.188·28-s − 0.365·30-s + 0.898·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(18.8926\)
Root analytic conductor: \(4.34656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2366,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 15 T + p T^{2} \) 1.79.p
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.523235559506182904045176798221, −7.967237699788896987138434023119, −7.16118816607441415874990006022, −6.21461681414132879150838049679, −5.78859923248525809812017303512, −4.37187378077028315346850081311, −3.85951608502984751539598244017, −2.53264614515264394499990069674, −1.24612752292527170450284146924, 0, 1.24612752292527170450284146924, 2.53264614515264394499990069674, 3.85951608502984751539598244017, 4.37187378077028315346850081311, 5.78859923248525809812017303512, 6.21461681414132879150838049679, 7.16118816607441415874990006022, 7.967237699788896987138434023119, 8.523235559506182904045176798221

Graph of the $Z$-function along the critical line